Визуальная одометрия — метод оценки положения и ориентации робота или иного устройства с помощью анализа последовательности изображений, снятых установленной на нем камерой (или камерами).[1]
В робототехнике и компьютерном зрении визуальная одометрия — это процесс определения положения и ориентации робота путем анализа связанных изображений камеры. Он использовался в широком спектре роботизированных приложений, например, на марсоходах Mars Exploration Rover.
В навигации одометрия обычно связана с использованием данных о движении приводов (к примеру от датчиков вращения) для оценки изменения положения в пространстве. Этот метод имеет свои минусы, из-за проскальзывания и неточностях при движении по неровным поверхностям, а также неприменим в роботах с нестандартными методами передвижения, к примеру в шагающих.
Визуальная одометрия подходит для точной навигации использующих любой тип передвижения на твёрдой поверхности.
Алгоритм
Большинство существующих подходов к визуальной одометрии основаны на следующих этапах.
↑ 12Comport, A.I.; Malis, E.; Rives, P. (2010). F. Chaumette; P. Corke; P. Newman (eds.). "Real-time Quadrifocal Visual Odometry". International Journal of Robotics Research. 29 (2—3): 245—266. CiteSeerX10.1.1.720.3113. doi:10.1177/0278364909356601. S2CID15139693.
↑Scaramuzza, D.; Siegwart, R. (October 2008). "Appearance-Guided Monocular Omnidirectional Visual Odometry for Outdoor Ground Vehicles". IEEE Transactions on Robotics. 24 (5): 1015—1026. doi:10.1109/TRO.2008.2004490. hdl:20.500.11850/14362. S2CID13894940.
↑Corke, P.; Strelow, D.; Singh, S. "Omnidirectional visual odometry for a planetary rover". Intelligent Robots and Systems, 2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference on. Vol. 4. doi:10.1109/IROS.2004.1390041.
↑Campbell, J.; Sukthankar, R.; Nourbakhsh, I.; Pittsburgh, I.R. "Techniques for evaluating optical flow for visual odometry in extreme terrain". Intelligent Robots and Systems, 2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference on. Vol. 4. doi:10.1109/IROS.2004.1389991.
↑Sunderhauf, N. Visual odometry using sparse bundle adjustment on an autonomous outdoor vehicle // Tagungsband Autonome Mobile Systeme 2005 / Sunderhauf, N., Konolige, K., Lacroix, S. … [и др.]. — Springer Verlag, 2005. — P. 157–163.Архивная копия от 11 февраля 2009 на Wayback MachineИсточник (неопр.). Дата обращения: 3 января 2021. Архивировано 11 февраля 2009 года.
↑Konolige, K.; Agrawal, M.; Bolles, R.C.; Cowan, C.; Fischler, M.; Gerkey, B.P. (2006). "Outdoor mapping and navigation using stereo vision". Proc. Of the Intl. Symp. On Experimental Robotics (ISER). Springer Tracts in Advanced Robotics. 39: 179—190. doi:10.1007/978-3-540-77457-0_17. ISBN978-3-540-77456-3.
↑Engel, Jakob; Schöps, Thomas; Cremers, Daniel (2014). "LSD-SLAM: Large-Scale Direct Monocular SLAM"(PDF). In Fleet D.; Pajdla T.; Schiele B.; Tuytelaars T. (eds.). Computer Vision. European Conference on Computer Vision 2014. Lecture Notes in Computer Science. Vol. 8690. doi:10.1007/978-3-319-10605-2_54. Архивировано из оригинала(PDF)22 октября 2014. Дата обращения: 3 января 2021.
↑Zaman, M. (2007). "High Precision Relative Localization Using a Single Camera". Robotics and Automation, 2007.(ICRA 2007). Proceedings. 2007 IEEE International Conference on. doi:10.1109/ROBOT.2007.364078.
↑Zaman, M. (2007). "High resolution relative localisation using two cameras". Journal of Robotics and Autonomous Systems (JRAS). 55 (9): 685—692. doi:10.1016/j.robot.2007.05.008.