Граф является блоковым тогда и только тогда, когда пересечение любых двух связных подмножеств вершин графа либо пусто, либо связно. Таким образом, связные подмножества вершин в связном блоковом графе образуют выпуклую геометрию[англ.], и этим свойством не обладает никакой другой вид графов[8]. По причине этого свойства в связном блоковом графе любое множество вершин имеет единственное минимальное связное надмножество, замыкание множества в выпуклой геометрии. Связные блоковые графы — это в точности те графы, в которых существует единственный порождённый путь, соединяющий любые две пары вершин[1].
Связанные классы графов
Блоковые графы являются хордальными[9] и дистанционно-наследуемыми графами. Дистанционно-наследуемые графы — это графы, в которых любые два порождённых пути между двумя вершинами имеют одну и ту же длину, что слабее требования блоковых графов как имеющих единственный порождённый путь между любыми двумя вершинами. Поскольку и хордальные графы, и дистанционно-наследуемые графы являются подклассами совершенных графов, блоковые графы тоже совершенны.
Любое дерево является блоковым графом. Другой пример класса блоковых графов дают мельницы.
Блоковые графы являются примером псевдо-медианных графов — для любых трёх вершин либо существует единственная вершина, лежащая на трёх кратчайших путях между этими тремя вершинами, либо существует единственный треугольник, рёбра которого лежат на этих кратчайших путях.[10]
Рёберные графы деревьев — это блоковые графы, в которых любая разрезающая вершина инцидентна максимум двум блокам, или, что то же самое, блоковые графы без клешней. Рёберные графы деревьев используются для поиска графов с заданным числом рёбер и вершин, в котором наибольший порождённый подграф, являющийся деревом как можно меньшего размера[12].
Блоковые графы неориентированных графов
Блоковый граф для заданного графа (обозначается ) — граф пересечений блоков графа : имеет вершину для каждой двусвязной компоненты графа и две вершины графа смежны, если соответствующие два блока разделяют (имеют общий) шарнир (в терминах Харари — точка сочленения)[13]. Если — граф с одной вершиной, то по определению будет пустым графом. заведомо является блочным — он имеет одну двусвязную компоненту для каждой точки сочленения графа и каждая двусвязная компонента, образованная таким путём, будет кликой. Обратно, любой блоковый граф является графом для некоторого [3]. Если — дерево, то совпадает с рёберным графом графа .
Граф имеет вершину для каждой точки сочленения графа . Две вершины смежны в , если они принадлежат одному и тому же блоку в [3].
Примечания
↑ 12Kristina Vušković. Even-hole-free graphs: A survey // Applicable Analysis and Discrete Mathematics. — 2010. — Т. 4, вып. 2. — С. 219–240. — doi:10.2298/AADM100812027V.
↑Блоковые графы иногда ошибочно называют деревьями Хусими, по имении японского физика Коди Хусими[англ.]), однако Хусими рассматривал Кактус (теория графов) — графы, в которых любая двусвязная компонента является циклом.
↑ 123Frank Harary. A characterization of block-graphs // Canadian Mathematical Bulletin. — 1963. — Т. 6, вып. 1. — С. 1–6. — doi:10.4153/cmb-1963-001-x.
↑ 123Edward Howorka. On metric properties of certain clique graphs // Journal of Combinatorial Theory, Series B. — 1979. — Т. 27, вып. 1. — С. 67–74. — doi:10.1016/0095-8956(79)90069-8.
↑ 12Hans-Jürgen Bandelt, Henry Martyn Mulder. Distance-hereditary graphs // Journal of Combinatorial Theory, Series B. — 1986. — Т. 41, вып. 2. — С. 182–208. — doi:10.1016/0095-8956(86)90043-2.
↑Paul H. Edelman, Robert E. Jamison. The theory of convex geometries // Geometriae Dedicata. — 1985. — Т. 19, вып. 3. — С. 247–270. — doi:10.1007/BF00149365.
↑Paul Erdős, Michael Saks, Vera T. Sós. Maximum induced trees in graphs // Journal of Combinatorial Theory, Series B. — 1986. — Т. 41, вып. 1. — С. 61–79. — doi:10.1016/0095-8956(86)90028-6.
↑Ф. Харари. Теория графов. — Москва: УРСС, 2003. — ISBN 5-354-00301. Глава 3. Блоки, стр. 41-46
Литература
Andreas Brandstädt, Van Bang Le, Jeremy P. Spinrad. Graph classes: a survey. — Philadelphia: SIAM, 2005. — (SIAM monographs on discrete mathematics). — ISBN 0-89871-432-X.
Для улучшения этой статьи по математике желательно: