Пояснение причин и соответствующее обсуждение вы можете найти на странице Википедия:К удалению/2 марта 2020. Пока процесс обсуждения не завершён, статью можно попытаться улучшить, однако следует воздерживаться от переименований или немотивированного удаления содержания, подробнее см. руководство к дальнейшему действию. Не снимайте пометку о выставлении на удаление до подведения итога обсуждения.
Алеш Лапанье (словен.Aleš Lapanje) европейский ученый, родом из Словении. В настоящее время является профессором и руководителем группы в отделении наук об окружающей среде им. Йожефа Стефана в Словении[1].
Алеш Лапанье родился 13 октября 1976 года в Любляне в семье полковника. Со школьных лет он был заинтересован во взаимодействиях, протекающих между организмами, в результате чего стал посещать среднюю школу с большим наборов биологических предметов. После, он закончил направление сестринского дела, получив знания в области здравоохранения. Долгое время он практиковал боевые искусства Дальнего Востока, где он получил чёрный пояс 2-го ДАНА[2]. В 1994 году он поступил в Университет Любляны и после успешного завершения был переведен в статус выпускника[3]. Получив докторскую степень в 2005 году, он продолжает свою деятельность во многих междисциплинарных областях науки. Женат, отец троих детей[4].
Под его руководством или лично им были получены следующие награды:
Разработанное живое антикоррозионное покрытие как одно из наиболее значимых достижений в Словении 2020 года (ARRS Excellent in Science 2020)[5].
Награда подопечного молодого учёного на FEMS poster award 2017 г.[6].
Награда L’Oreal за лучшую женскую исследовательскую работу его Ph.D. студента, 2014 г[7].
Лучшая исследовательская студенческая работа Словении 2000 г.[10][11].
Научный интерес
Основным направлением исследований является понимание основных концепций пространственной организации и взаимодействия различных микроорганизмов в сложных многоклеточных популяциях и сообществах. Его основной интерес заключается в разработке методологических подходов для создания определённых структур микроорганизмов (например, искусственных биопленок[12], методов захвата отдельных клеток[13], искусственных агрегатов[13][14], синтетических хлопьев[14] и т. д.). Целью его исследований является понимание функционирования, размещения и самоорганизации прикрепленных микробов к различным неорганическим и органическим поверхностям. Его цель состоит в том, чтобы соединить метаболические пути между различными микроорганизмами в очень маленьком микро-пространстве.
Научная деятельность
Алеш Лапанье получил степень доктора в Университете Любляны по теме кишечного микробиома животных. После получения докторской степени он получил постдока в университете Любляны, где он работал в течение 2 лет. В течение следующего года проработал постдоком в Швейцарии в университете ETH Zurich в 2007 году. Наряду с этим он создал свой первый научно-исследовательский институт физической биологии, который просуществовал 6 лет. В 2014 году он создал и возглавил частную компанию Институт Метагеномики и Микробных Технологий[15]. В период с 2015 по 2017 год он создал и возглавил группу специалистов, работающих по теме «Антимикробная наномедицина и нанобиотехнологияАрхивная копия от 2 марта 2020 на Wayback Machine» в Саратовском государственном университете, Российская Федерация, по приглашению профессора доктора Глеба Сухорукова из Университета королевы Марии, Лондон, при поддержке российского мегагранта[16].
Им было создано более 250 библиографических записейАрхивная копия от 2 марта 2020 на Wayback Machine, в общей сложности 51 опубликованных оригинальных научных статей, многочисленные материалы для конференций, несколько глав книг, отчеты об исследованиях в промышленности, 7 заявок на патенты и 5 патентов.
Разработан метод контроля роста бактерий на основании создания искусственных биоплёнок. Tomaž Rijavec, Jan Zrimec, Rob van Spanning, Aleš Lapanje. Natural Microbial Communities Can Be Manipulated by Artificially Constructed Biofilms (англ.) // Advanced Science. — 2019. — Vol. 6, iss. 22. — P. 1901408. — ISSN 2198-3844. — doi:10.1002/advs.201901408[12].
Обнаружено влияние электростатической модификации на рост бактерий, их прикрепление и физиологический ответ Iaroslav Rybkin, Dmitry Gorin, Gleb Sukhorukov, Aleš Lapanje. Thickness of Polyelectrolyte Layers of Separately Confined Bacteria Alters Key Physiological Parameters on a Single Cell Level (англ.) // Frontiers in Bioengineering and Biotechnology. — 2019. — Т. 7. — ISSN 2296-4185. — doi:10.3389/fbioe.2019.00378[13].
Объяснено влияние бактерий, продуцирующих HCN, на лучший рост растений Tomaž Rijavec, Aleš Lapanje. Hydrogen Cyanide in the Rhizosphere: Not Suppressing Plant Pathogens, but Rather Regulating Availability of Phosphate (англ.) // Frontiers in Microbiology. — 2016. — Т. 7. — ISSN 1664-302X. — doi:10.3389/fmicb.2016.01785[28].
Показано, что микробы из Чада в Северной Африке переносятся в Альпы песчаными бурями Jocelyne Favet, Ales Lapanje, Adriana Giongo, Suzanne Kennedy, Yin-Yin Aung. Microbial hitchhikers on intercontinental dust: catching a lift in Chad (англ.) // The ISME Journal. — 2013-04. — Vol. 7, iss. 4. — P. 850—867. — ISSN 1751-7370 1751-7362, 1751-7370. — doi:10.1038/ismej.2012.152.[29].
Показано, что эффективность антимикробной активности различных антибиотиков, используемых против микобактерий, зависит от количества доступного железа во внеклеточной среде R. Kopinc, A. Lapanje. Antibiotic susceptibility profile of Mycobacterium avium subspecies hominissuis is altered in low-iron conditions (англ.) // Journal of Antimicrobial Chemotherapy. — 2012-12-01. — Vol. 67, iss. 12. — P. 2903—2907. — ISSN 1460—2091 0305-7453, 1460—2091. — doi:10.1093/jac/dks313.[30].
Было обнаружено, что микробиом помогает животным пережить стресс окружающей среды, такой как загрязнение ртути, а также то, что параметры кишечного микробиома могут определять степень тяжести и стойкость такого стресса Ales Lapanje, Alexis Zrimec, Damjana Drobne, Maja Rupnik. Long-term Hg pollution-induced structural shifts of bacterial community in the terrestrial isopod (Porcellio scaber) gut (англ.) // Environmental Pollution. — 2010-10. — Vol. 158, iss. 10. — P. 3186-3193. — doi:10.1016/j.envpol.2010.07.001.[31].
Был разработан автономный цельно-клеточный биосенсор, в который он включил экологически значимые бактерии в обнаружение биодоступной ртути при значениях ниже нг / л Tomaž Rijavec, Jan Zrimec, Fani Oven, Manca Kovač Viršek, Matej Somrak. Development of Highly Sensitive, Automatized and Portable Whole-Cell Hg Biosensor Based on Environmentally Relevant Microorganisms // Geomicrobiology Journal. — 2017-08-09. — Т. 34, вып. 7. — С. 596—605. — ISSN 0149-0451. — doi:10.1080/01490451.2016.1257661.[32].
Обнаружено, что хорошо известная антимикробная активность терапевтических личинок обладает избирательными свойствами, обусловленными экологическими отношениями между животными и бактериями окружающей среды Domen Jaklič, Aleš Lapanje, Klemen Zupančič, Dragica Smrke, Nina Gunde-Cimerman. Selective antimicrobial activity of maggots against pathogenic bacteria // Journal of Medical Microbiology,. — 2008. — Т. 57, вып. 5. — С. 617—625. — ISSN 0022-2615. — doi:10.1099/jmm.0.47515-0.[33].