Алгебра множеств в теории множеств — это непустая система подмножеств некоторого множества , замкнутая относительно операций дополнения (разности) и объединения (суммы).
Определение
Семейство подмножеств множества (здесь — булеан) называется алгеброй, если оно удовлетворяет следующим свойствам:
- Если множество , то и его дополнение
- Объединение двух множеств также принадлежит
Замечания
- По определению, если алгебра содержит множество , то она содержит и его дополнение. Объединением с его дополнением является исходное множество . Дополнением к множеству является пустое множество. Это означает, что множество и пустое множество содержится в алгебре по определению.
- В силу свойств операций над множествами, алгебра множеств также замкнута относительно пересечения и симметрической разности.
- Алгебра множеств — это частный случай алгебры с единицей, где операцией «умножения» является пересечение множеств, а операцией «сложения» является симметрическая разность.
- Если исходное множество является пространством элементарных событий, то алгебра называется алгеброй событий — ключевое понятие теории вероятностей и связанных с ней математических дисциплин, имеющее уникальную интерпретацию и играющее самостоятельную роль в математике.
Алгебра событий
Алгебра событий (в теории вероятностей) — алгебра подмножеств пространства элементарных событий , элементами которого служат элементарные события.
Как и положено алгебре множеств, алгебра событий содержит невозможное событие (пустое множество) и замкнута относительно теоретико-множественных операций, производимых с конечным количеством множеств. Достаточно потребовать, чтобы алгебра событий была замкнута относительно двух операций, например, пересечения и дополнения, из чего сразу последует её замкнутость относительно любых других теоретико-множественных операций. Алгебра событий, замкнутая относительно теоретико-множественных операций, производимых со счётным количеством множеств, называется сигма-алгеброй событий.
В теории вероятностей встречаются следующие алгебры и сигма-алгебры событий:
- алгебра конечных подмножеств ;
- сигма-алгебра счётных подмножеств ;
- алгебра подмножеств , образованная конечными объединениями интервалов;
- сигма-алгебра борелевских подмножеств топологического пространства , то есть наименьшая сигма-алгебра, содержащая все открытые подмножества ;
- алгебра цилиндров в пространстве функций и сигма-алгебра, ими порожденная.
Событие или , заключающееся в том, что из двух событий и происходит по крайней мере одно, называется суммой событий и .
Вероятностное пространство — это алгебра событий с заданной функцией вероятности , то есть сигма-аддитивной конечной мерой, областью определения которой является алгебра событий, где .
Любая сигма-аддитивная вероятность на алгебре событий однозначно продолжается до сигма-аддитивной вероятности, определённой на сигма-алгебре событий, порожденной данной алгеброй событий.
См. также
Примечания
Литература
{rq|refless|sources}