Spinhenge@home |
---|
Скриншот программы во время расчета |
Платформа |
BOINC |
Объём загружаемого ПО |
1 МБ |
Объём загружаемых данных задания |
1 КБ |
Объём отправляемых данных задания |
0,5 КБ (Fe30) |
Объём места на диске |
<2 МБ |
Используемый объём памяти |
6 МБ (Fe30) |
Графический интерфейс |
есть (только заставка) |
Среднее время расчёта задания |
3 часа |
Deadline |
14 дней |
Возможность использования GPU |
нет |
Медиафайлы на Викискладе |
Spinhenge@home — проект добровольных вычислений на платформе BOINC. Целью проекта является целенаправленный синтез специально спроектированных магнитных молекул (например, и [1]) на основании квантово-механического моделирования с использованием метода Монте-Карло (алгоритм Метрополиса), результаты которого можно непосредственно сравнивать с экспериментом. Кроме того, в ходе исследований планируется расширить понимание молекулярного магнетизма, а также найти возможность его использования в прикладных областях. Проект поддерживается Университетом прикладных наук[англ.] в Билефельде (англ. Bielefeld University of Applied Sciences), департаментом электротехники и информатики, в сотрудничестве с Министерством энергетики США (англ. DOE) и Лабораторией Эймса (англ. Ames Laboratory) Университета Айовы (англ. Iowa State University).
Вычисления в рамках проекта стартовали в июле 2006 года. По состоянию на 25 сентября 2011 года в нём приняли участие более 58 000 добровольцев (более 152 000 компьютеров) из 183 стран, обеспечивая вычислительную мощность в 22,7 терафлопс[2].
Описание проекта
В качестве текущих задач проекта рассматриваются[3]:
- исследования динамики вращения в магнитных молекулах;
- моделирование для термодинамических исследований в комплексных спиновых (вращательных) системах;
- описание комплексного устройства молекул и наноструктурированных материалов на их основе (например, изучение динамики магнитных барьеров);
- исследование возможности применения магнитных молекул в квантовых компьютерах (в настоящее время фирмой IBM создана модель кубита с использованием магнитной молекулы ).
Перспективной областью практического применения является создание высокоинтегрированных модулей памяти (см. FeRAM) и миниатюрных магнитных выключателей. Также существуют биомедицинские приложения при локальной химиотерапии опухолей[4].
История проекта
- 24 июля 2006 года добавлен набор заданий («mo72_fe30_10_x_10_*») для расчета магнитных свойств молекулы , включающей в своем составе 30 парамагнитных ионов (спин = 5/2), расположенных в молекуле в вершинах икосододекаэдра, при низких температурах[5][6].
- 1 сентября 2006 года добавлен набор заданий («kagome_100_100_*»)[6].
- 11 сентября 2006 года добавлен набор заданий («dodecahedron_*») для расчета магнитных свойств антиферромагнитного додекаэдра[6].
- 12 сентября 2006 года добавлен набор заданий («kagome_2_*»)[6].
- 20 сентября 2006 года добавлен дополнительный набор заданий («fe30_*») для расчета магнитных свойств молекулы [6].
- 5 ноября 2006 года добавлен набор заданий («fullerene_*») для исследования свойств магнитного фуллерена, включающего в своем составе 60 ионов , расположенных в вершинах усеченного икосаэдра (аналогичную структуру имеет футбольный мяч), при низких температурах[6].
- 5 декабря 2006 года добавлен набор заданий («great_rhombi_T25_*», «great_rhombi_T30_*») для исследования магнитных свойств молекулы, включающей 120 ионов , расположенных в вершинах ромбоикосододекаэдра при низких температурах (25 и 30 K)[6].
- 13 декабря 2006 года был запущен набор заданий («bcc_lattice_*») для расчета критической температуры в диапазоне температур 1—1000 K для кубической центрированной решетки (англ. Body Centered Cubic) (каждый ион взаимодействует с 8 ближайшими соседями) с целью проверки адекватности модели с использованием метода Монте-Карло[6].
- 22 декабря 2006 года был запущен аналогичный набор заданий («sc_29791_cyc_*») для расчетов критической температуры простой кубической решетки (англ. Simple Cubic) (каждый ион взаимодействует с 6 ближайшими соседями)[6].
- 27 января 2007 года были начаты более детальные расчеты для молекулы [7].
- 9 апреля 2011 г. в рамках проекта были начаты расчеты, связанные с магнитными наночастицами с оболочкой (англ. core/shell nanoparticle). Один из и взаимодействующих друг с другом металлов, входящих в состав частицы, образует ядро (антиферромагнетик), другой (ферромагнетик) — оболочку. По заявлениям авторов проекта данные частицы могут найти применение в устройствах хранения данных высокой плотности и перспективных спинтронных устройствах. На данный момент исследуется ряд вопросов, связанных со статическим и динамическим поведением данных частиц[7].
Галерея
Научные достижения
См. также
Ссылки
Обсуждение проекта в форумах:
Примечания
|
---|
Астрономия | |
---|
Биология и медицина | |
---|
Когнитивные | |
---|
Климат | |
---|
Математика | |
---|
Физико- технические | |
---|
Многоцелевые | |
---|
Прочие | |
---|
Утилиты | |
---|