RasiРНК были обнаружены у плодовой мушки Drosophila и некоторых одноклеточныхэукариот, однако их наличие у млекопитающих не было подтверждено, в отличие от piРНК, выявленных у многих видов беспозвоночных и позвоночных, включая млекопитающих[5]. Впрочем, так как белки, связывающиеся с rasiРНК, имеются у беспозвоночных и позвоночных, может оказаться, что у них есть и rasiРНК, которые пока не были обнаружены. RasiРНК имеются у дрожжейSchizosaccharomyces pombe, а также у некоторых растений, и ни у одного из этих видов не было выявлено наличие белков Piwi (Piwi имеются лишь у животных[6])[7]. Показано, что и piРНК, и rasiРНК наследуются по материнской линии, однако, скорее всего, белки Piwi наследуются по материнской линии, из-за чего наблюдалось наследование и piРНК, и rasiРНК по материнской линии[8].
Отличия от других интерферирующих РНК
RasiРНК отличаются от других классов РНК, осуществляющих РНК-интерференцию: микроРНК, малых интерферирующих РНК (siРНК) и piРНК. В отличие от микроРНК и siРНК, взаимодействующих с белками группы AGO семейства Argonaute, rasiРНК взаимодействуют с группой белков Piwi того же семейства[9][10]. RasiРНК также отличаются своим размером. В отличие от микроРНК длиной 21—23 нуклеотид (н.), siРНК длиной 20—25 н. и piРНК длиной 24—31 н. rasiРНК имеет длину от 24 до 29 н. в зависимости от организма[11]. В то время как siРНК образуются и из смысловых, и из антисмысловых транскриптов, rasiРНК образуются исключительно из антисмысловых[12]. Более того, хотя для процессинга микроРНК нужен ферментDicer-1, а siРНК — Dicer-2, то rasiРНК не нужен ни один из этих белков. Впрочем, у растений имеются Dicer-подобные (Dcl) белки, причём Dcl1 процессирует микроРНК и siРНК длиной 24 н., а Dcl2 — rasiРНК длиной 24 н[7][13]. Эти данные свидетельствуют о том, что образование rasiРНК не только отличается от образования микроРНК и siРНК и у растений rasiРНК функционируют в отсутствие белков Piwi[7].
Образование
Предполагается, что источником rasiРНК служат двуцепочечные РНК, образующиеся при отжиге смысловых и антисмысловых транскриптов мобильных генетических элементов. Биогенез rasiРНК независим от Dicer, однако для него необходимы белки семейства Argonaute: Ago3, Piwi и Piwi-подобный белок Aubergine (Aub). Путь образования rasiРНК представляет собой цикл пинг-понг. Сначала уже существующая молекула rasiРНК в комплексе с белками Piwi/Aub связывается с первичным транскриптом мобильного элемента или повторяющихся последовательностей (отсюда название этой группы РНК[2]) и вызывает отрезание фрагмента транскрипта. Один из оставшихся фрагментов связывается с белком Ago3 и вместе с ним связывается с антисмысловым первичным транскриптом, катализируя отрезание фрагмента от него. Этот фрагмент далее связывается с Piwi/Aub и может далее разрушать смысловые вредоносные транскрипты и одновременно обеспечивать образование новых rasiРНК (пинг-понг-цикл). На схеме слева приведена схема этого процесса с указанием процессинга 5'-конца rasiРНК, однако путь процессинга 3'-конца остаётся неизвестным[7].
Функции
В то время как микроРНК осуществляет репрессию на уровне трансляции и разрушение мРНК, siРНК — разрушение мРНК, rasiРНК участвует в регуляции структуры хроматина и трансляционном сайленсинге[7]. У Drosophilaмутации в белках Piwi, связывающихся с rasiРНК, приводят к стерильности и утрате клеток зародышевой линии и у самцов, и у самок[11]. Репрессия транспозонов не зависит от утраты Dicer клетками зародышевой линии, следовательно, они являются мишенью действия rasiРНК (процессинг микроРНК и siРНК зависим от Dicer)[7]. Подобно микроРНК и siРНК, путь rasiРНК эволюционно консервативен. В отсутствие rasiрНК-пути в клетках зародышевой линии может происходить ретранспозиция, которая приводит к повреждениям ДНК и запускает апоптоз[14].
Примечания
↑Макарова Ю. А., Крамеров Д. А.Некодирующие РНК (рус.) // Биохимия. — 2007. — Т. 72, № 11. — С. 1427—1448. Архивировано 14 июля 2014 года.