полученной отождествлением I и −I, где I — единичная матрица. В данной статье мы подразумеваем под G любую группу, изоморфную PSL(2, 7).
Свойства
G = PSL(2, 7) имеет 168 элементов. Это можно видеть, посчитать возможные столбцы. Имеется 72−1 = 48 возможностей для первого столбца, 72−7 = 42 возможностей для второго столбца. Мы должны разделить на 7−1 = 6, чтобы добиться равенства определителя единице, а затем мы должны разделить на 2, когда мы отождествляем I и −I. Результат равен (48×42)/(6×2) = 168.
Общеизвестно, что PSL(n, q) является простой для n, q ≥ 2 (где q — некоторая степень простого числа), если не (n, q) = (2, 2) или (2, 3). PSL(2, 2) изоморфнасимметрической группеS3, и PSL(2, 3) изоморфна знакопеременной группеA4. Фактически, PSL(2, 7) является второй по величине из неабелевых простых групп после знакопеременной группы A5 = PSL(2, 5) = PSL(2, 4).
Следующая таблица описывает классы сопряжённости в терминах порядка элементов в классах, числа классов, минимальный многочлен всех представлений в GL(3, 2) и запись функции для представления в PSL(2, 7).
Порядок
Размер
Мин. Полином
Функция
1
1
x+1
x
2
21
x2+1
−1/x
3
56
x3+1
2x
4
42
x3+x2+x+1
1/(3−x)
7
24
x3+x+1
x + 1
7
24
x3+x2+1
x + 3
Порядок группы равен 168=3*7*8, откуда следует существование подгрупп Силова порядков 3, 7 и 8. Легко описать первые две — они циклические, поскольку любая группа с простым порядком циклическая. Любой элемент класса сопряжённости 3A56 образует силовскую 3-подгруппу. Любой элемент классов сопряжённости 7A24, 7B24 образует силовскую 7-подгруппу. Силовская 2-подгруппа является диэдральной группой порядка 8. Её можно описать как централизатор любого элемента из класса сопряжённости 2A21. В представлении GL(3, 2) силовская 2-подгруппа состоит из верхних треугольных матриц.
Каждый сохраняющий ориентацию автоморфизм прямой P1(7) получается таким способом, а тогда, G = PSL(2, 7) можно понимать геометрически как группу симметрий проективной прямой P1(7). Полная группа возможных автоморфизмов, сохраняющих ориентацию, является расширением порядка 2 группы PGL(2, 7) и группа колинеаций[англ.] проективной прямой является полной симметрической группы точек.
Однако PSL(2, 7) также изоморфна группе PSL(3, 2) (= SL(3, 2) = GL(3, 2)), специальной (общей) линейной группе 3×3 матриц над полем с 2 элементами. Подобным же образом G = PSL(3, 2) действует на проективную плоскостьP2(2) над полем с 2 элементами, известную также как плоскость Фано:
Для и
Снова любой автоморфизм P2(2) получается таким образом, а тогда G = PSL(3, 2) можно геометрически понимать как группу симметрии этой проективной плоскости. Плоскость Фано можно описать как произведение октонионов.
Оно является компактной римановой поверхностью рода g = 3 и является единственной такой поверхностью, для которой размер конформной группы автоморфизмов достигает максимума 84(g−1). Эта граница возникает вследствие теоремы Гурвица об автоморфизмах, которая выполняется для всех g>1. Такие "поверхности Гурвица" редки. Следующий род, для которого такая поверхность существует, это g = 7, а следующий за ним — g = 14.
Квартика Клейна возникает во многих областях математики, включая теорию представлений, теории гомологий, умножении октонионов, великую теорему Ферма.
Группа Матьё
PSL(2, 7) является максимальной подгруппой группы Матьё M21. Группы Матьё M21 и M24 могут быть построены как расширения PSL(2, 7). Эти расширения можно интерпретировать в терминах мозаик квартики Клейна, но нельзя реализовать геометрическими симметриями мозаик [1].
Действия группы
PSL(2, 7) действует на различные множества:
Если интерпретировать её как линейные автоморфизмы проективной прямой над F7, она действует 2-транзитивно на множество из 8 точек со стабилизатором порядка 3. (PGL(2, 7) действует строго 3-транзитивно с тривиальным стабилизатором.)
Если интерпретировать её как автоморфизмы мозаики квартики Клейна, она действует транзитивно на 24 вершины (или, двойственно, на 24 семиугольника) со стабилизатором порядка 7 (соответствующего вращению вокруг вершины/семиугольника).
Если интерпретировать её как подгруппу группы Матьё M21, действующей на 21 точку, она не действует транзитивно на 21 точку.