Gepard (крупнокалиберные винтовки)
|
Read other articles:
Liga 3 Sulawesi Utara 2019Musim2019Tanggal1 September - 29 Oktober 2019JuaraPersma 1960 Merdeka← 2018 2020 → Seluruh statistik akurat per 30 Oktober 2019. Liga 3 2019 Sulawesi Utara atau juga disebut Piala Pangdam XIII/Merdeka Tahun 2019 adalah musim kompetisi liga 3 zona provinsi Sulawesi Utara yang dimulai pada 1 September - 29 Oktober 2019. Persma 1960 Merdeka menjadi juara Liga 3 2019 Sulawesi Utara setelah mengalahkan Persmin Minahasa dengan skor 1-0.[1] Liga 3 provinsi Sulaw...
Sebuah pindjajap (kanan) di selat MelakaPenjajap (sebutan bahasa Portugis: Pangajava) adalah sejenis perahu yang digunakan untuk pertempuran di laut. Perahu jenis ini dulu banyak digunakan baik oleh angkatan laut maupun bajak laut di Nusantara. Perahu penjajap berbentuk panjang dan ramping, dengan haluan dan buritan yang sangat lancip dan dibuat ringan agar dapat bergerak cepat. Ukurannya beragam, tetapi semakin kecil makin baik, karena kecepatannya menjadi bertambah besar. Serangan biasanya ...
1996 American filmA Step Toward TomorrowDirected byDeborah ReinischWritten byTom NursallHarris GoldbergStarring Judith Light Tom Irwin Christopher Reeve Alfre Woodard CinematographyNeil RoachEdited byScott VickreyMusic byRon RaminProductioncompanyCraig Anderson ProductionsRelease date November 10, 1996 (1996-11-10) Running time93 minutesCountryUnited StatesLanguageEnglish A Step Toward Tomorrow is a 1996 drama film directed by Deborah Reinisch and starring Judith Light as a div...
WhizzGoCompany typeLimited CompanyIndustryCar rentalFounded2004 (2004)FounderCharlotte MortonDefunctAugust 28, 2009 (2009-08-28)Fatemerged into City Car Club, which was sold to EnterpriseSuccessorEnterprise Car ClubHeadquartersLondon, EnglandNumber of employees18Websitewww.whizzgo.co.uk WhizzGo was a United Kingdom car rental company that provided a pay-by-the-hour car rental service in cities across the UK. Pay-by-the-hour cars were provided for an hourly price which inc...
Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...
This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensure the article remains verifiable and maintains a consistent citation style. Several templates and tools are available to assist in formatting, such as reFill (documentation) and Citation bot (documentation). (August 2022) (Learn how and when to remove this message) This article needs to be updated. The reason given is: needs a thorough update. Please help ...
Portuguese football manager and former player In this Portuguese name, the first or maternal family name is da Silva and the second or paternal family name is Cruz. Tulipa Tulipa in 2023Personal informationFull name Manuel Jorge da Silva CruzDate of birth (1972-10-16) 16 October 1972 (age 51)Place of birth Vila Nova de Gaia, PortugalHeight 1.72 m (5 ft 8 in)Position(s) MidfielderTeam informationCurrent team Torreense (manager)Youth career1982–1986 Avintes1986–1991 ...
Sceaux 行政国 フランス地域圏 (Région) イル=ド=フランス地域圏県 (département) オー=ド=セーヌ県郡 (arrondissement) アントニー郡小郡 (canton) 小郡庁所在地INSEEコード 92071郵便番号 92330市長(任期) フィリップ・ローラン(2008年-2014年)自治体間連合 (fr) メトロポール・デュ・グラン・パリ人口動態人口 19,679人(2007年)人口密度 5466人/km2住民の呼称 Scéens地理座標 北緯48度4...
此條目或其章節极大或完全地依赖于某个单一的来源。 (2021年2月1日)请协助補充多方面可靠来源以改善这篇条目。致使用者:请搜索一下条目的标题(来源搜索:奈温 — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引) 本页面有缅文字母,操作系统及浏览器須支持特殊字母与符号才能正確显示为缅文字母,否则可能變成乱码�...
Северный морской котик Самец Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапси...
2016年美國總統選舉 ← 2012 2016年11月8日 2020 → 538個選舉人團席位獲勝需270票民意調查投票率55.7%[1][2] ▲ 0.8 % 获提名人 唐納·川普 希拉莉·克林頓 政党 共和黨 民主党 家鄉州 紐約州 紐約州 竞选搭档 迈克·彭斯 蒂姆·凱恩 选举人票 304[3][4][註 1] 227[5] 胜出州/省 30 + 緬-2 20 + DC 民選得票 62,984,828[6] 65,853,514[6]...
List of achievements by Jamaican competitors Sporting event delegationJamaica at the1992 Summer OlympicsIOC codeJAMNOCJamaica Olympic AssociationWebsitewww.joa.org.jmin BarcelonaCompetitors36 (22 men and 14 women) in 5 sportsFlag bearer Merlene OtteyMedalsRanked 38th Gold 0 Silver 3 Bronze 1 Total 4 Summer Olympics appearances (overview)19481952195619601964196819721976198019841988199219962000200420082012201620202024Other related appearances British West Indies (1960 S) Jamaica compe...
Questa voce o sezione sugli argomenti storia dell'architettura e archeologia non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Replica di un triclinio nella Collezione Statale Archeologica di Monaco di epoca romana Il triclinio (triclinium in latino[1]) era il locale in cui veniva servito il pranzo ...
DalegarthEskdaleStation on heritage railwayRiver Mite arrives at Dalegarth, February 2016General informationLocationBoot, Eskdale, CumbriaEnglandCoordinates54°23′46″N 3°16′30″W / 54.396°N 3.275°W / 54.396; -3.275Grid referenceNY 174 008Owned byR&EROperated byR&ERManaged byR&ERPlatforms2Key dates1918Opened1920sRelocatedLocationDalegarthLocation in Copeland BoroughShow map of the former Borough of CopelandDalegarthLocation in CumbriaShow map of C...
Victoria RosportDatos generalesNombre Football Club Victoria RosportFundación 1 de octubre de 1928 (95 años)Presidente Jean DondelingerEntrenador Reiner BrinsaInstalacionesEstadio VictoriArenaCapacidad 1000Ubicación Rosport, LuxemburgoUniforme Titular Alternativo Última temporadaLiga Luxembourg Division of Honour(2023-24) 7.º Página web oficial[editar datos en Wikidata] El FC Victoria Rosport es un equipo de fútbol de Luxemburgo que juega en la Division Nationale, la lig...
A dynasty of kings This article is about the Malayu Kingdom dynasty. For the Hindu thread, see Kalava. For the 2018 film, see Mauli (film). Part of a series on the History of Indonesia Timeline Prehistory Paleolithic Java Man 1,000,000 BP Flores Man 94,000–12,000 BP Neolithic Toba catastrophe 75,000 BP Buni culture 400 BCE Hindu and Buddhist kingdoms Kutai Kingdom 350–1605 Tarumanagara Kingdom 400s–500s Kantoli 400s-500s Kalingga Kingdom 500s–600s Melayu Kingdom 600s–1347 Srivijaya ...
Questa voce sull'argomento contee dell'Indiana è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Contea di DearbornconteaLocalizzazioneStato Stati Uniti Stato federato Indiana AmministrazioneCapoluogoLawrenceburg Data di istituzione1803 TerritorioCoordinatedel capoluogo39°09′00″N 84°58′48″W39°09′00″N, 84°58′48″W (Contea di Dearborn) Superficie795 km² Abitanti46 109 (2000) Densità58 ab./km² Altre informazioniFu...
The Liberal Party of Canada ran a full slate of candidates in the 1997 federal election, and won 155 out of 301 seats to form a majority government. Many of the party's candidates have their own biography pages; information about others may be found here. Quebec Richelieu: Jocelyn Paul Jocelyn Paul was a retired teacher.[1] She was a supporter of party leader Jean Chrétien in the late 1990s, at a time when some in the party sought to replace him with Paul Martin.[2] She rece...
1997 studio album by SWVRelease Some TensionStudio album by SWVReleasedJuly 29, 1997 (1997-07-29)Recorded1996–1997Genre R&B[1] soul[2] pop[2] hip hop soul[2][3] Length53:15LabelRCAProducer Sean Puffy Combs Roderick Majesty Wiggins Malik Pendleton The Characters Timbaland Brian Alexander Morgan Deric D-Dot Angelettie Marc Kinchen K. Perez A.O Perez SWV chronology New Beginning(1996) Release Some Tension(1997) A Special Christ...
Type of plane partition 20 points and their Voronoi cells (larger version below) In mathematics, a Voronoi diagram is a partition of a plane into regions close to each of a given set of objects. It can be classified also as a tessellation. In the simplest case, these objects are just finitely many points in the plane (called seeds, sites, or generators). For each seed there is a corresponding region, called a Voronoi cell, consisting of all points of the plane closer to that seed than to any ...