ARIMA (англ.autoregressive integrated moving average, иногда модель Бокса — Дженкинса, методология Бокса — Дженкинса) — интегрированнаямодель авторегрессии — скользящего среднего — модель и методология анализа временных рядов. Является расширением моделей ARMA для нестационарных временных рядов, которые можно сделать стационарными взятием разностей некоторого порядка от исходного временного ряда (так называемые интегрированные или разностно-стационарные временные ряды). Модель означает, что разности временного ряда порядка подчиняются модели .
— оператор разности временного ряда порядка d (последовательное взятие d раз разностей первого порядка — сначала от временного ряда, затем от полученных разностей первого порядка, затем от второго порядка и т. д.)
Также данная модель интерпретируется как - модель с единичными корнями. При имеем обычные -модели.
Операторное представление
С помощью лагового оператора данные модели можно записать следующим образом:
,
или сокращённо:
.
где
Пример
Простейшим примером ARIMA-модели является известная модель случайного блуждания:
ARIMA-модели позволяют моделировать интегрированные или разностно-стационарные временные ряды (DS-ряды, diference stationary).
Временной ряд называется интегрированным порядка (обычно пишут ), если разности ряда порядка , то есть являются стационарными, в то время как разности меньшего порядка (включая нулевого порядка, то есть сам временной ряд) не являются стационарными относительно некоторого тренда рядами (TS-рядами, trend stationary). В частности — это стационарный процесс.
Порядок интегрированности временного ряда и есть порядок модели .
Методология ARIMA (Бокса — Дженкинса)
Подход ARIMA к временным рядам заключается в том, что в первую очередь оценивается стационарность ряда. Различными тестами выявляются наличие единичных корней и порядок интегрированности временного ряда (обычно ограничиваются первым или вторым порядком). Далее при необходимости (если порядок интегрированности больше нуля) ряд преобразуется взятием разности соответствующего порядка и уже для преобразованной модели строится некоторая ARMA-модель, поскольку предполагается, что полученный процесс является стационарным, в отличие от исходного нестационарного процесса (разностно-стационарного или интегрированного процесса порядка ).
Модели ARFIMA
Теоретически порядок интегрированности временного ряда может быть не целой величиной, а дробной. В этом случае говорят о дробно-интегрированных моделях авторегрессии — скользящего среднего (ARFIMA, AutoRegressive Fractional Integrated Moving Average). Для понимания сущности дробного интегрирования необходимо рассмотреть разложение оператора взятия -ой разности в степенной ряд по степеням лагового оператора для дробных (разложение в ряд Тейлора):