Плодовая мушка Drosophila melanogaster была введена в качестве модельного организма в генетические эксперименты Томасом Морганом в 1909 году и до настоящего времени является одним из самых любимых модельных организмов среди исследователей, изучающих эмбриональное развитие животных. Малый размер, быстрая смена поколений, высокая плодовитость, прозрачность эмбрионов — делают дрозофилу идеальным объектом для генетических исследований.
Дрозофила имеет голометаболический жизненный цикл — три отдельных стадии постэмбрионального развития, отличающиеся строением тела: личинка, куколка и имаго. В ходе эмбриогенеза образуются структуры, необходимые для функционирования организма в течение этих фаз и перехода между ними. В результате эмбриогенеза формируется личинка мухи. Личинка содержит имагинальные диски — группы клеток, из которых затем образуются структуры имаго. На стадии куколки ткани личинки разрушаются, и из имагинальных дисков образуются ткани взрослого организма. Такое развитие называется развитием с полным метаморфозом.
Эмбриогенез дрозофилы уникален среди других модельных организмов тем, что дробление у неё неполное. В результате дробления образуется синцитий. Около 5000 ядер накапливаются в неразделенной цитоплазме и далее мигрируют к поверхности ооцита. Происходит целлюляризация — образование индивидуальных плазматических мембран, при этом обособляются клетки, окружающие желточный мешок. Первыми на заднем конце эмбриона отделяются полярные клетки (первичные половые клетки).
Мезодерма инвагинирует по вентральной бороздке. Средняя кишка образована эктодермой. Полярные клетки интернализуются другим образом. Зародышевая полоска удлиняется, задняя часть, включая заднюю кишку, растягивается и расширяется к переднему концу по спинной стороне зародыша. На ранних этапах сегментации образуются межсегментные бороздки. В момент формирования трахей появляются первые признаки дыхательной активности.
Втягивание зародышевой полоски возвращает заднюю кишку к спинной стороне заднего конца зародыша. Оставшиеся стадии включают в себя интернализацию нервной системы (эктодермального происхождения) и образование внутренних органов.
Формирование передне-задней оси у Drosophila
Одним из наиболее изученных примеров формирования паттернов развития вдоль передне-задней оси является формирование передне-задней оси тела, зависящее от градиентов морфогенов, у плодовой мушки Drosophila melanogaster. Некоторые другие многоклеточные организмы используют сходные механизмы формирования осей тела, хотя относительное значение передачи сигнала между первичными клетками многих развивающихся организмов выше, чем в описанном случае.
Основа для формирования передне-задней оси закладывается во время формирования яйца (оогенеза), задолго до момента оплодотворения и откладки яиц.
Во время созревания ооцитапитающие клетки(nursing cells) синтезируют большое количество РНК и белков, которые переносятся в созревающий ооцит по цитоплазматическим мостикам. Большинство этих молекул бывают необходимы в первые два часа эмбрионального развития дрозофилы, до начала транскрипции в зиготе.
Развивающийся ооцит имеет градиенты концентраций мРНК. Гены, которые кодируют такие мРНК, называют генами материнского эффекта. Bicoid и hunchback — это гены материнского эффекта, которые имеют особое значение в формировании передних частей зародыша дрозофилы (головы и груди). Nanos и Caudal — это гены материнского эффекта, которые определяют формирование задних брюшных сегментов зародыша дрозофилы.
В яйце микротрубочки реорганизуются в ходе оогенеза. Сначала центр организации микротрубочек находится у заднего полюса ооцита, и микротрубочки направлены своими ±концами к переднему полюсу ооцита. Однако перед формированием градиентов мРНК генов bicoid и nanos локализация центра организации и положение микротрубочек меняется на противоположное: в этот период они направлены своими ±концами к заднему полюсу яйца[1]. мРНК гена bicoid связывается с микротрубочками и накапливается на переднем конце формирующихся яиц дрозофилы. В неоплодотворенных яйцах транскрипты находятся на самом кончике передней части яйца. Последние данные указывают на то, что сразу после оплодотворения образуется градиент мРНК в результате направленной диффузии мРНК в яйце, видимо, по периферической сети микротрубочек при участии белкового продукта гена Staufen.[2]
мРНК Nanos связана с цитоскелетом яйца, но располагается на заднем конце яйца. мРНК генов Hunchback и caudal теряют системы контроля положения и распределяются практически равномерно в объеме яйца.
Когда мРНК генов материнского эффекта транслируется в белки, образуются градиенты белка Bicoid на переднем полюсе яйца и белка Nanos—на заднем полюсе. Белок Bicoid блокирует трансляцию мРНК белка caudal, и поэтому белковый продукт этого гена образуется только на заднем конце яйца. Белок Nanos связывает мРНК hunchback и блокирует её трансляцию на заднем конце эмбриона дрозофилы.
Белки Bicoid, Hunchback, и Caudal являются факторами транскрипции. Bicoid имеет ДНК-связывающий гомеодомен, который связывает ДНК и мРНК nanos. Bicoid связывается со специфической последовательностью на 3' нетранслируемом участке мРНК caudal и блокирует трансляцию.
Уровень белка Hunchback в раннем эмбрионе значительно увеличивается за счет трансляции мРНК, которая образована уже зиготой. В течение раннего эмбриогенеза дрозофилы происходит деление ядра без деления цитоплазмы. Множество образующихся ядер расходятся к периферии цитоплазмы. Экспрессия генов в этих ядрах регулируется белками Bicoid, Hunchback, и Caudal. Например, Bicoid является транскрипционным активатором гена hunchback.
Применение
Использование направленного мутагенеза позволяет изменять функции генов и следить за изменениями в эмбриогенезе. Существуют способы маркировки белков дрозофилы флюоресцентными белками, например, (GFP). Таким образом можно следить за динамикой распределения белкового продукта в клетке. Геном дрозофилы полностью секвенирован. Исследователи могут найти ортологи интересующих генов в геноме дрозофилы и изучить их вклад в эмбриогенез.