Ура́н-свинцо́вый ме́тод — один из видов радиоизотопного датирования. Применим к геологическим объектам, содержащим уран, и основан на определении того, какая его доля успела распасться за время существования объекта (с момента кристаллизации минералов в нём). Используются два изотопа урана, цепочки распада которых кончаются разными изотопамисвинца; это сильно повышает надёжность результатов.
Данный метод — один из самых старых и хорошо разработанных способов радиоизотопного датирования и, при хорошем исполнении, — самый надёжный метод для объектов возрастом в сотни миллионов лет. Для одного из его вариантов средняя погрешность результатов из самых цитируемых статей к 2010 году достигла 0,2 %, а некоторые лаборатории получают и значительно меньшую[1][2]. Датировать можно и образцы, близкие по возрасту к Земле, и образцы младше 1 млн лет[3][4][1]. Большая надёжность и точность достигаются благодаря использованию данных по двум цепочкам распада и благодаря некоторым свойствам циркона — минерала, обычно применяемого для уран-свинцовых датировок. Этот метод считается «золотым стандартом» геохронологии[5][6].
Используются следующие превращения изотопов:
238U → 206Pb с периодом полураспада 4,4683 ± 0,0024 млрд лет[7] (ряд радия — см. Радиоактивные ряды),
235U → 207Pb с периодом полураспада 0,70381 ± 0,00048 млрд лет[7] (ряд актиния).
Иногда в дополнение к ним используют распад тория-232 (уран-торий-свинцовый метод):
Все эти превращения идут во много стадий, но промежуточные нуклиды распадаются намного быстрее материнских.
Периоды полураспада 235U и 238U определены точнее, чем для всех остальных используемых в геохронологии изотопов. Но при самых точных исследованиях погрешность периодов полураспада выходит на первое место среди источников ошибок➤.
Распад урана создаёт возможность определять возраст и другими способами:
К идее определения возраста горных пород на основе распада урана пришёл Эрнест Резерфорд в начале XX века. Тогда ещё не было известно, что в этом процессе образуется свинец, и первые попытки датирования основывались на количестве другого продукта распада урана — гелия. Первую уран-гелиевую (и радиоизотопную вообще) оценку возраста Резерфорд озвучил на лекции в 1904 году[Комм. 2][14][15][16].
В 1905 году Бертрам Болтвуд заподозрил, что из урана образуется ещё и свинец, а Эрнест Резерфорд отметил, что датировки по нему должны быть точнее, чем по гелию, легко покидающему породы[17]. В 1907 году Болтвуд сделал оценку постоянной распада урана, определил отношение концентраций свинца и урана в ряде образцов урановой руды и получил значения возраста от 410 до 2200 млн лет[18]. Результат имел большое значение: он показал, что возраст Земли во много раз больше 20-40 млн лет, полученных десятью годами ранее Уильямом Томсоном на основании скорости остывания планеты[19].
Следующим шагом стала работа Артура Холмса, разработавшего более точные способы измерения концентрации урана и свинца. Они годились не только для урановых руд, но и для других минералов, в том числе циркона. В 1911 году Холмс опубликовал исследования ряда новых образцов по уточнённой постоянной распада урана. Поскольку тогда не было известно про образование части свинца в результате распада тория и даже про существование изотопов, оценки Болтвуда обычно были завышены на десятки процентов; значительные ошибки встречались и у Холмса[17][19]. Однако датировки Холмса для девонских (около 370 млн лет) образцов из Норвегии отличались от современных не более чем на 5 %[4].
В 1955 году Джордж Тилтон[англ.] применил для определения состава проб изотопное разбавление[англ.], открывшее путь к высокой точности измерений и к массовому использованию циркона, ставшего с тех времён основным применяемым минералом[21]. В 1950-х — 1960-х стали широко доступными урановые и свинцовые изотопные метки для разбавления[4]. В 1956 году Джордж Везерилл[англ.] предложил ставшую общеупотребительной визуализацию метода — диаграмму конкордии[1]➤, а Клэр Паттерсон определил свинец-свинцовым методом возраст Земли. В 1971 были опубликованы[7] очень точные значения постоянных распада изотопов урана, используемые до сих пор[1]. В 1973 Томас Крог[англ.] предложил метод растворения циркона плавиковой кислотой в тефлоновых ёмкостях, на 3 порядка снизивший загрязнение проб свинцом[23]. Это сильно увеличило точность датировок и количество занимающихся ими лабораторий[24][21][1]. С 1950-х годов продолжалась разработка способов удаления повреждённых областей кристаллов циркона[25]. В 1982 году Томас Крог предложил удачный механический[26], а в 2005 году Джеймс Маттинсон — химический[25] способ, ставшие стандартными[1][4]. Благодаря этим и другим изобретениям за время существования уран-свинцового метода требуемая масса образца уменьшилась на много порядков, а точность увеличилась на 1-2 порядка[1]. Годовое количество публикаций, посвящённых уран-свинцовым датировкам, постоянно растёт и с 2000 по 2010 год увеличилось более чем втрое[1].
Циркон имеет большую прочность, стойкость к химическим воздействиям и высокую температуру закрытия — более 950—1000°C[29] (то есть при меньших температурах не обменивается свинцом с окружающей средой). Кроме того, важно, что он широко распространён в изверженных породах. В его кристаллическую решётку легко встраивается уран и намного труднее — свинец, поэтому весь свинец в составе циркона обычно можно считать образовавшимся после кристаллизации. Количество свинца иного происхождения можно рассчитать по количеству свинца-204, который не образуется при распаде изотопов урана[30][1][21].
Близкие свойства имеют бадделеит, монацит и титанит (последний, однако, набирает при кристаллизации больше свинца)[2][29]. Их температуры закрытия — >950°C, >750°C и 600—650°C соответственно[29]. Бадделеит, а при невысоких температурах и монацит с титанитом менее склонны к потере свинца, чем циркон[5][2].
Уран-свинцовым методом датируют и ископаемые остатки организмов, содержащие карбонат кальция или апатит, хотя эти материалы подходят для него хуже. Есть, в частности, оценки возраста апатита из конодонтовых элементов и из зубовакул и динозавров[31]. Датировка этого минерала осложнена низким изначальным соотношением концентраций U/Pb и другими причинами[32]. Температура закрытия у него составляет 425—500°C[29]. Зубы при жизни организма практически не содержат урана и тория и приобретают их только при фоссилизации; немало урана вбирают при фоссилизации и кости[31]. Погрешность имеющихся на 2012 год датировок апатитовых окаменелостей составляет около 10 % или больше[33]. В карбонатах изначальное отношение концентраций U/Pb, напротив, велико, но они более подвержены обмену веществ с окружающей средой (в частности, при характерном для них превращении арагонита в кальцит)[5]. По прогнозу 2015 года, уран-свинцовое датирование фосфатов и карбонатов в ближайшие годы будет интенсивно развиваться[4].
Подготовка образцов
Разные кристаллы и даже области кристаллов из одного и того же геологического объекта могут иметь разную пригодность для датирования: они отличаются по степени повреждения радиацией и внешними факторами; кроме того, кристалл может состоять из древней сердцевины («унаследованного ядра»), на которую позже наросли новые слои[1][5]. Поэтому необходим отбор пригодных образцов, их областей или фрагментов под микроскопом. Для этого применяется и оптическая, и электронная микроскопия[1][6].
К повреждению более склонны внешние области кристаллов циркона — в том числе и потому, что они обычно содержат больше урана[6]. Эти области можно удалить механически или химически. Некоторое время стандартом была абразия кристаллов при их круговом движении в потоке воздуха в стальной камере (воздушная абразия, Томас Крог[англ.], 1982)[26], а позже — их травлениеплавиковой и азотной кислотой с предварительным отжигом («химическая абразия», Джеймс Маттинсон, 2005)[25][1]. Отжиг нужен для ликвидации дефектов решётки, при наличии которых травление нарушает элементный и даже изотопный состав пробы. В отличие от абразии, травление удаляет повреждённые (метамиктизированные) области и в глубине кристалла, вокруг микротрещин. Эти способы обработки сильно повышают точность результатов[5][4][24][21][34].
Для исследований методом ID-TIMS подготовленные кристаллы растворяют в плавиковой или соляной кислоте в тефлоновых ёмкостях[23], добавив изотопную метку (см. ниже). Далее уран и свинец можно для повышения точности отделить от других элементов реакциями ионного обмена (примеси затрудняют ионизацию урана и свинца на нити накала спектрометра и, в случае близкой массы иона, трудноотделимы от них при измерениях), после чего пробу наносят на нить накала[1]. Для исследований методами, основанными на облучении образцов, их заключают в эпоксидную смолу и заполировывают[20][31][35][36].
Применение изотопного разбавления связано с надобностью точного измерения соотношения концентраций не только изотопов одного элемента (что на масс-спектрометрах делается легко), но и изотопов разных элементов. Для этого пробу смешивают с изотопной меткой (известным количеством тех же элементов с другим изотопным составом), после чего изначальный состав пробы можно рассчитать по измеренным соотношениям концентраций изотопов каждого элемента[3][37][4][5].
Следующие методы определения состава годятся для исследования отдельных микроскопических областей кристаллов. Они менее точны, но и менее трудоёмки, чем TIMS. Поскольку изотопное разбавление к ним не применимо, для точного измерения соотношения концентраций элементов они требуют калибровки по образцам известного состава[4][1].
Масс-спектрометрия вторичных ионов (SIMS). Исследуются ионы, выбитые из полированной поверхности пробы тонким ионным пучком. Наилучшими из подобных спектрометров являются установки типа SHRIMP[англ.] («чувствительный ионный микрозонд высокого разрешения»), позволяющие уверенно отделить ионы свинца от молекулярных ионов близкой массы[5][4].
Масс-спектрометрия с индуктивно-связанной плазмой и лазерной абляцией (LA-ICP-MS). Исследуемые ионы испаряются из образца лазерным лучом. По сравнению с SIMS требует большего количества вещества для анализа, имеет несколько меньшее пространственное разрешение и трудности в измерении количества 204Pb, но быстрее, дешевле и имеет ряд других преимуществ; лучшие исследования достигают такой же точности, как SIMS[4][6].
Рентгеноспектральный микроанализ. Анализируется рентгеновское излучение от пробы, облучаемой электронами (микроанализ с электронным зондом, EPMA; «химический метод изохрон», CHIME) или, реже, протонами (PIXE). Метод даёт элементный, но не изотопный, состав образца (отсюда название «химический») и поэтому имеет ограниченное применение. Чаще всего его используют для древних кристаллов монацита[Комм. 3][21][5], реже — для циркона, ксенотима, бадделеита и др.[35][4][38] Отличается исключительно хорошим (порядка 1 мкм) пространственным разрешением, позволяющим составить детальную карту значений возраста для образца размером в доли миллиметра, и не разрушает образец[35][1][38]. Вариант с протонным лучом имеет лучшее разрешение (1 мкм против 1-3 мкм)[36][35] и меньший порог обнаружения U, Th и Pb (<10 ppm против ~200 ppm), чем с электронным, но технически сложнее и дороже[36].
По усреднённым данным из самых цитируемых статей, погрешность (2σ) датировок по 206Pb/238U по состоянию на 2010 год составляла 0,2 % для ID-TIMS и около 3 % для SIMS и LA-ICP-MS[1]. В некоторых лабораториях обычная точность датировок отдельных зёрен циркона (по состоянию на 2015 год) может достигать 0,05 % для ID-TIMS и 0,5 % для SIMS и LA-ICP-MS[2].
Расходуемая масса образца, по усреднённым данным из самых цитируемых статей за 2010 год, составляла около 10−5 г для ID-TIMS и около 5·10−9 г для SIMS[1] (исследования по методам SIMS и LA-ICP-MS расходуют область пробы диаметром в десятки мкм и глубиной 1-2 мкм (SIMS) или десятки мкм (LA-ICP-MS)[2][21]; EPMA и PIXE могут работать по области на порядок меньшего диаметра и не разрушают её)[1][6][4][36]. Время анализа, по тем же данным, составляет несколько часов для ID-TIMS, около получаса для SIMS и ≤2 минуты для LA-ICP-MS[1]. При исследовании методом EPMA на одну точку образца уходят секунды или десятки секунд, а на построение карты возраста размером 200×200 пикселей — обычно до 30 часов[38][35].
Методика учёта потерь свинца
Использование двух изотопов урана даёт возможность определить возраст объекта даже в случае потери им некоторой части свинца. Поскольку 235U распадается быстрее, чем 238U, отношение растёт быстрее, чем . Для образцов, в истории которых не было потери или привноса рассматриваемых изотопов, оба этих соотношения растут с возрастом строго определённым образом. Поэтому на графике, вдоль осей которого отложены эти величины, точки, соответствующие таким образцам, могут лежать только на одной определённой линии. Эта линия известна как конкордия или кривая согласованных значений абсолютного возраста[40], попадающие на неё точки — как конкордантные, а не попадающие — как дискордантные. По мере старения образца точка движется вдоль неё. Таким образом, каждой точке конкордии соответствует определённый возраст образца. Нулевому возрасту соответствует начало координат (0,0).
Если образец теряет свинец, то процент потерь в первом приближении одинаков для всех его изотопов. Поэтому точка, соответствующая образцу, сдвигается с конкордии в направлении точки (0,0). Величина сдвига пропорциональна количеству потерянного свинца. Если взять несколько образцов одного возраста, которые отличаются величиной этих потерь, соответствующие точки будут лежать на прямой, пересекающей конкордию и указывающей примерно на начало координат. Эта прямая известна как дискордия; она является изохроной (то есть все её точки соответствуют одному возрасту). Верхняя точка пересечения конкордии с этой прямой и показывает возраст объекта[30][40].
Вторая (нижняя) точка пересечения в идеальном случае соответствует возрасту события метаморфизма, которое привело к потере свинца. Если оно произошло недавно, эта точка находится в начале координат; по мере старения образца она движется в сторону большего возраста[1]. Но если потеря свинца была не одномоментной, а растянутой на время, сравнимое с возрастом образца, дискордия перестаёт быть прямой линией. Тогда положение нижней точки пересечения аппроксимирующей её прямой с конкордией ни о чём не говорит. Постепенная утечка свинца — нередкое явление, поскольку она сильно облегчена в местах радиационного повреждения кристаллов. Поэтому интерпретация положения этой точки неоднозначна[1]; существует мнение, что её нужно рассматривать как показатель возраста возможного события метаморфизма только тогда, когда есть какие-либо геологические признаки такого события[5].
Положение верхней точки пересечения не зависит от того, одномоментной или постепенной была потеря свинца; эта точка показывает возраст объекта в обоих случаях[5].
Приобретение образцом урана сдвигает точки на диаграмме аналогично потере свинца, а потеря урана, как и приобретение свинца, — в противоположную сторону («обратная дискордантность», англ.reverse discordance). В случае потери урана положение точек пересечения конкордии и дискордии можно интерпретировать аналогично вышеописанному. Однако циркон склонен именно к потере свинца (атомы которого хуже встраиваются в его кристаллическую решётку, причём расположены в местах её радиационного повреждения)[6], и из упомянутых ситуаций она встречается чаще всего. Обратная дискордантность, иногда наблюдающаяся в некоторых участках кристаллов циркона, может объясняться миграцией свинца в пределах кристалла[5]; в некоторых минералах она встречается чаще и может иметь и другие причины[21]. Приобретение свинца делает образцы непригодными для определения возраста, так как изотопный состав этого свинца может быть разным. Впрочем, встречается оно редко[6].
Проблема точности постоянных распада
В уран-свинцовом датировании приняты значения постоянных распада изотопов урана, опубликованные[7] ещё в 1971 году и в 1977 году рекомендованные[9] Подкомиссией по геохронологии Международного союза геологических наук. Их погрешность (2σ) равна 0,11 % для урана-238 и 0,14 % для урана-235[5][6]. Она меньше, чем у всех остальных изотопов, используемых для датировок[41][1], но с развитием метода стала главной помехой для роста точности результатов (погрешность от остальных источников ошибок нередко оказывается меньшей 0,1 %)[5][42][2].
Сравнение данных, полученных по разным изотопам урана, показало, что в принятых значениях этих постоянных есть некоторая несогласованность, которую можно объяснить заниженным на 0,09 % (хотя и не выходящим за пределы указанной погрешности) значением постоянной распада урана-235. Коррекция этого значения может несколько повысить точность датировки, но дальнейшее уточнение требует новых измерений упомянутых постоянных[42][43][41][6], и эти измерения являются насущной задачей[44]. Кроме того, современные исследования показывают, что среднее для земных пород соотношение концентраций изотопов урана , важное для свинец-свинцовых датировок, немного меньше принятого[9] значения 137,88 и составляет около 137,82, причём в разных образцах оно отличается на сотые и даже десятые доли процента[6][4][1].
Примечания
Комментарии
↑В геохронологии принято значение 14,01 ± 0,07 млрд лет, а в ядерной физике — 14,05 ± 0,06 млрд лет.
↑Оценка Резерфорда основывалась на данных Рамзая и Траверса по содержанию урана и гелия в фергусоните. Она составляла 40 млн лет; в следующем году Резерфорд пересмотрел её с учётом уточнённой скорости образования гелия и получил 500 млн лет.
↑Благодаря очень высокому содержанию урана, тория и, следовательно, радиогенного свинца, а также (при невысоких температурах) меньшей, чем у циркона, склонности к потере свинца.
↑ 1234Jaffey A. H., Flynn K. F., Glendenin L. E., Bentley W. C., Essling A. M. Precision measurement of half-lives and specific activities of 235U and 238U (англ.) // Physical Review C : journal. — 1971. — Vol. 4, no. 5. — P. 1889—1906. — doi:10.1103/PhysRevC.4.1889. — Bibcode: 1971PhRvC...4.1889J.
↑Gleadow A. J. W., Seiler C. Fission Track Dating and Thermochronology // Encyclopedia of Scientific Dating Methods / W. J. Rink, J. W. Thompson. — Springer Netherlands, 2015. — P. 285–296. — 978 p. — ISBN 978-94-007-6304-3. — doi:10.1007/978-94-007-6304-3_5.
↑Zeitler P. K. U–Th/He Dating // Encyclopedia of Scientific Dating Methods / W. J. Rink, J. W. Thompson. — Springer Netherlands, 2015. — P. 932–940. — 978 p. — ISBN 978-94-007-6304-3. — doi:10.1007/978-94-007-6304-3_131.
↑Mattinson J. M.The geochronology revolution // The Web of Geological Sciences: Advances, Impacts, and Interactions / M. E. Bickford. — Geological Society of America, 2013. — P. 304. — 611 p. — (Geological Society of America special paper 500). — ISBN 9780813725000.
↑Boltwood B. On the Ultimate Disintegration Products of the Radio-active Elements. Part II. The Disintegration Products of Uranium (англ.) // American Journal of Science : journal. — 1907. — Vol. 23, ser.4. — P. 77—88. — doi:10.2475/ajs.s4-23.134.78.
↑Pickering, R., Kramers, J.D., Partridge, T., Kodolanyi, J., Pettke, T. U–Pb dating of calcite–aragonite layers in speleothems from hominin sites in South Africa by MC-ICP-MS (англ.) // Quaternary Geochronology[англ.] : journal. — 2010. — Vol. 5, no. 5. — P. 544—558. — doi:10.1016/j.quageo.2009.12.004.
↑ 12345Suzuki K., Kato T. CHIME dating of monazite, xenotime, zircon and polycrase: Protocol, pitfalls and chemical criterion of possibly discordant age data (англ.) // Gondwana Research : journal. — 2008. — Vol. 14, no. 4. — P. 569—586. — doi:10.1016/j.gr.2008.01.005.
↑ 123Suzuki K., Dunkley D. J. Uranium-Lead, Chemical Isochron U-Pb Method (CHIME) // Encyclopedia of Scientific Dating Methods / W. J. Rink, J. W. Thompson. — Springer Netherlands, 2015. — P. 863–869. — 978 p. — ISBN 978-94-007-6304-3. — doi:10.1007/978-94-007-6304-3_200.
Parrish R. Uranium–Lead Dating // Encyclopedia of Scientific Dating Methods / W. J. Rink, J. W. Thompson. — Springer Netherlands, 2015. — P. 848–857. — 978 p. — ISBN 978-94-007-6304-3. — doi:10.1007/978-94-007-6304-3_193.
Dickin A. P.5. Lead isotopes // Radiogenic Isotope Geology. — 2nd ed. — Cambridge University Press, 2005. — P. 101–135. — 512 p. — ISBN 0-521-82316-1.
Untuk kegunaan lain, lihat Kitab Hukum Karma (disambiguasi). Bagian dari seri tentangBuddhisme SejarahPenyebaran Sejarah Garis waktu Sidang Buddhis Jalur Sutra Benua Asia Tenggara Asia Timur Asia Tengah Timur Tengah Dunia Barat Australia Oseania Amerika Eropa Afrika Populasi signifikan Tiongkok Thailand Jepang Myanmar Sri Lanka Vietnam Kamboja Korea Taiwan India Malaysia Laos Indonesia Amerika Serikat Singapura AliranTradisi Buddhisme prasektarian Aliran Buddhis awal Mahāsāṃghika Sthavira...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: The Captain's Journey – news · newspapers · books · scholar · JSTOR (February 2024) (Learn how and when to remove this template message) 1978 studio album by Lee RitenourThe Captain's JourneyStudio album by Lee RitenourReleased1978 (1978)Studio Sou...
Cangkir tengkorak dari Gua Gough Cangkir tengkorak adalah sebuah tempat minum atau mangkuk makan yang terbuat dari batok kepala manusia yang dipotong dari bagian lain dari kerangka tulang. Pemakaian tengkorak manusia sebagai cangkir minum dalam pemakaian ritual atau sebagai trofi dikabarkan dalam sejumlah sumber sepanjang sejarah dan di kalangan berbagai suku bangsa, dan di kalangan budaya Barat sering kali diasosiasikan dengan budaya nomadik dari stepa Eurasia. Bacaan tambahan Balfour, Henry...
Egyptian-Palestian diplomat Mohamed Abdulkhalek El Sayed Hassounaمحمد عبد الخالق السيد2nd Secretary-General of the Arab LeagueIn officeSeptember 1952 – 1 June 1972Preceded byAbdul Rahman AzzamSucceeded byMahmoud Riad Personal detailsBorn28 October 1898Cairo, EgyptDied20 January 1992 (aged 93)Cairo, Egypt Mohamed Abdulkhalek El Sayed Hassouna (Arabic: محمد عبد الخالق السيد حسونة; 28 October 1898 – 20 January 1992) was an Egyptian-Palestinia...
Commune and village in Anenii Noi District, MoldovaPuhăceniCommune and villagePuhăceniLocation within Anenii Noi DistrictShow map of Anenii NoiPuhăceniLocation within MoldovaShow map of MoldovaCoordinates: 47°01′N 29°21′E / 47.017°N 29.350°E / 47.017; 29.350Country MoldovaDistrictAnenii Noi DistrictPopulation (2014 census)[1] • Total3,401Time zoneUTC+2 (EET) • Summer (DST)UTC+3 (EEST) Puhăceni is a village and commu...
Jalur kereta api Kedungjati–SecangIkhtisarJenisJalur lintas cabangSistemJalur kereta api rel ringanStatus Beroperasi Tuntang - Bedono Reaktivasi Stasiun Kedungjati -Tuntang terhenti sementara Tidak Beroperasi Bedono - SecangLokasiJawa TengahTerminusKedungjatiSecangOperasiDibangun olehNederlandsch-Indische Spoorweg MaatschappijDibuka1873-1905Ditutup1976Dibuka kembali21 April 1978 (sebagai jalur KA museum)PemilikPT Kereta Api IndonesiaOperator Daerah Operasi IV Semarang Kedungjati - Gemawang ...
GIRLS' GENERATION ~Girls&Peace~ Japan 2nd TourTur oleh Girls' GenerationLokasiJepangGirls' Generation II ~Girls & Peace~Mulai09 Februari 2013 (2013-02-09)Berakhir10 April 2013 (2013-04-10)Penampilan2 di Osaka6 di Saitama2 di Hiroshima2 di Nagoya2 di Fukuoka 2 di Niigata 2 di Kobe18 TotalKronologi konser Girls' Generation Girls' Generation Tour (2011-2012) Second Japanese Tour(2013) GIRLS' GENERATION ~Girls&Peace~ Japan 2nd Tour adalah tur Jepang yang kedua oleh girlb...
Kandahar Aramaic inscriptionTransliteration in Roman alphabet of the Aramaic inscription of Kandahar.MaterialNatural stone.WritingAramaicCreatedcirca 260 BCEPeriod/culture3rd Century BCEDiscovered31°32′57″N 65°43′03″E / 31.5493°N 65.7175°E / 31.5493; 65.7175PlaceKandahar, AfghanistanPresent locationKandahar, Afghanistan class=notpageimage| Location of the Kandahar Aramaic inscription in Afghanistan. The Aramaic inscription of Kandahar is an inscription on a...
Public university in Millersville, Pennsylvania, U.S. Millersville University of PennsylvaniaFormer namesLancaster County Normal School (1855–1859)Millersville State Normal School (1859–1927)Millersville State Teachers College (1927–1959)Millersville State College (1959–1983)[1]MottoSeize the OpportunityTypePublic liberal arts master's level doctoral levelEstablished1855Endowment$43.9 million[2]PresidentDaniel A. WubahAcademic staff299 full-timeAdministrative staff540 ...
London bus company Stagecoach LondonStagecoach London Alexander Dennis Enviro400 in Romford in February 2023ParentStagecoachFounded1994HeadquartersWest HamService areaCentral LondonEast LondonSouth East LondonService typeBus servicesHubsStratford, Romford, Woolwich, LewishamFleet1,463 (March 2023)OperatorEast LondonLea Interchange Bus CompanySelkentThamesideWebsitewww.stagecoachbus.com Stagecoach London is a major bus operator in Greater London. It is a subsidiary of Stagecoach and operates s...
GondofaresKoin perak Gondofares, dicetak di DrangianaRaja Indo-ParthiaBerkuasac. 19—ca. 46PenerusOrtaghnes (Drangiana dan Arachosia)Abdagases I (Gandhara)Informasi pribadiKematian46WangsaWangsa SurenAgamaZoroastrianisme Gondofares I adalah pendiri Kerajaan Indo-Parthia dan raja paling berpengaruhnya, memerintah dari 19 sampai 46. Seorang anggota dari Wangsa Suren, ia masuk pada garis pangeran lokal yang memerintah provinsi Parthia Drangiana sejak perseteruannya dengan Indo-Skiti...
Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...
Primary airport of Belize Philip S. W. Goldson International AirportIATA: BZEICAO: MZBZSummaryAirport typePublicServesBelize CityLocationLadyvilleHub for Tropic Air Maya Island Air Elevation AMSL5 m / 16 ftCoordinates17°32′21″N 088°18′30″W / 17.53917°N 88.30833°W / 17.53917; -88.30833Websitewww.pgiabelize.comMapMZBZLocation in BelizeRunways Direction Length Surface m ft 07/25 2,950 9,678 Asphalt Statistics (2023)Total Passengers1,040,000Aircr...
Battle fought in 1016 between the English and the Danes Battle of BrentfordPart of the Viking invasions of EnglandA monument commemorating this and other battles in BrentfordDate1016LocationBrentford, MiddlesexResult Anglo-Saxon victoryBelligerents Kingdom of England Kingdom of DenmarkCommanders and leaders Edmund Ironside Cnut the GreatCasualties and losses Heavy losses Unknown vteViking invasions of England Lindisfarne Hingston Down Great Heathen Army (865–78) Alcea York...
Society whose service sector provides more economic value than manufacturing This article is about a shift from a manufacturing to a services economy. For societal effects of the Industrial Revolution, see Industrial Revolution. For offshoots of industrial music, see List of industrial music genres. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources:...
European Network of Transmission System Operators for Electricity (ENTSO-E) Rechtsform AISBL Gründung 1999 Sitz Brüssel Mitglieder 43 (Unternehmen)[1] Website www.entsoe.eu Der European Network of Transmission System Operators for Electricity (ENTSO-E) ist ein europäischer Verband, in dem alle Übertragungsnetzbetreiber (ÜNB) Pflichtmitglieder sind. Die Vorgängerorganisation hieß European Transmission System Operators (ETSO). Inhaltsverzeichnis 1 Entstehung 2 Struktur 3 Mitglie...
Ceremony marking the investiture of a monarch For other uses, see Coronation (disambiguation). The coronation of Charles VII of France (1429), detail of the painting Jeanne d'Arc (1886–1890) by Jules Eugène Lenepveu A coronation is the act of placement or bestowal of a crown upon a monarch's head. The term also generally refers to the ceremony which marks the formal investiture of a monarch with regal power. In addition to the crowning, this ceremony may include the presentation of other i...
This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Richard, 4th Prince of Sayn-Wittgenstein-Berleburg – news · newspapers · books · scholar · JSTOR (February 2022) 4th Prince of Sayn-Wittgenstein-Berleburg Richard4th Prince of Sayn-Wittgenstein-BerleburgPrince of Sayn-Wittgenstein-BerleburgReign1904 &...