Уравнение диффузии представляет собой частный вид дифференциального уравнения в частных производных. Бывает нестационарным и стационарным.
В смысле интерпретации при решении уравнения диффузии речь идет о нахождении зависимости концентрации вещества (или иных объектов) от пространственных координат и времени, причем задан коэффициент (в общем случае также зависящий от пространственных координат и времени), характеризующий проницаемость среды для диффузии. При решении уравнения теплопроводности речь идет о нахождении зависимости температуры среды от пространственных координат и времени, причем задана теплоёмкость и теплопроводность среды (также в общем случае неоднородной).
Физически в том и другом случае предполагается отсутствие или пренебрежимость макроскопических потоков вещества. Таковы физические рамки применимости этих уравнений. Также, представляя непрерывный предел указанных задач (то есть не более, чем некоторое приближение), уравнение диффузии и теплопроводности в общем не описывают статистических флуктуаций и процессов, близких по масштабу к длине и времени свободного пробега, также весьма сильно отклоняясь от предполагаемого точного решения задачи в том, что касается корреляций на расстояниях, сравнимых (и больших) с расстояниями, проходимыми звуком (или свободными от сопротивления среды частицами при их характерных скоростях) в данной среде за рассматриваемое время.
Это в подавляющей части случаев сразу же означает и то, что уравнения диффузии и теплопроводности по области применимости далеки от тех областей, где становятся существенными квантовые эффекты или конечность скорости света, то есть в подавляющей части случаев не только по своему выводу, но и принципиально, ограничиваются областью классической ньютоновской физики.
В задачах диффузии или теплопроводности в жидкостях и газах, находящихся в движении, вместо уравнения диффузии применяется уравнение переноса, расширяющее уравнение диффузии на тот случай, когда пренебрежением макроскопическим движением недопустимо.
Ближайшим формальным, а во многом и содержательным, аналогом уравнения диффузии является уравнение Шрёдингера, отличающееся от уравнения диффузии множителем мнимая единица перед производной по времени. Многие теоремы о решении уравнения Шрёдингера и даже некоторые виды формальной записи его решений прямо аналогичны соответствующим теоремам об уравнении диффузии и его решениях, однако качественно их решения различаются очень сильно.
где φ(r, t) — плотность диффундирующего вещества в точке r и во время t и D(φ, r) — обобщённый коэффициент диффузии для плотности φ в точке r; ∇ — оператор набла. Если коэффициент диффузии зависит от плотности — уравнение нелинейно, в противном случае — линейно.
-мерный случай — прямое обобщение приведенного выше, только под оператором набла, градиентом и дивергенцией, а также под оператором Лапласа надо понимать -мерные версии соответствующих операторов:
Это касается и двумерного случая .
Мотивация
A.
Обычно уравнение диффузии возникает из эмпирического (или как-то теоретически полученного) уравнения, утверждающего пропорциональность потока вещества (или тепловой энергии) разности концентраций (температур) областей, разделённых тонким слоем вещества заданной проницаемости, характеризуемой коэффициентом диффузии (или теплопроводности):
(одномерный случай),
(для любой размерности),
в сочетании с уравнением непрерывности, выражающим сохранение вещества (или энергии):
(одномерный случай),
(для любой размерности),
с учетом в случае уравнения теплопроводности ещё теплоёмкости (температура = плотность энергия / удельная теплоемкость).
Здесь источник вещества (энергии) в правой части опущен, но он, конечно же, может быть легко туда помещён, если в задаче есть приток (отток) вещества (энергии).
Также предполагается, что на поток диффундирующего вещества (примеси) не действуют никакие внешние силы, в том числе сила тяжести (пассивная примесь).
B.
Кроме того, оно естественно возникает как непрерывный предел аналогичного разностного уравнения, возникающего в свою очередь при рассмотрении задачи о случайном блуждании на дискретной решётке (одномерной или -мерной). (Это простейшая модель; в более сложных моделях случайных блужданий уравнение диффузии также возникает в непрерывном пределе). Простейшей интерпретацией функции в этом случае служит количество (или концентрация) частиц в данной точке (или вблизи неё), причём каждая частица движется независимо от остальных без памяти (инерции) своего прошлого (в несколько более сложном случае — с ограниченной по времени памятью).
Решение
В одномерном случаефундаментальное решение однородного уравнения с постоянным — не зависящим от и — (при начальном условии, выражаемом дельта-функцией и граничном условии ) есть
В этом случае можно интерпретировать как плотность вероятности того, что одна частица, находившаяся в начальный момент времени в исходном пункте, через время перейдёт в пункт с координатой . То же самое — с точностью до множителя, равного количеству диффундирующих частиц — относится к их концентрации, при условии отсутствия или пренебрежимости взаимодействия диффундирующих частиц между собой. Тогда (при таких начальных условиях) средний квадрат удаления диффундирующих частиц (или соответствующая характеристика распределения температуры) от начальной точки
В случае произвольного начального распределения общее решение уравнения диффузии представляется в интегральном виде как свёртка:
Физические замечания
Так как приближение, реализуемое уравнениями диффузии и теплопроводности, принципиально ограничивается областью низких скоростей и макроскопических масштабов (см. выше), то неудивительно, что их фундаментальное решение на больших расстояниях ведёт себя не слишком реалистично, формально допуская бесконечное распространение воздействия в пространстве за конечное время; надо при этом заметить, что величина этого воздействия так быстро убывает с расстоянием, что этот эффект как правило в принципе ненаблюдаем (например, речь идёт о концентрациях много меньше единицы).
Впрочем, если речь идёт о ситуациях, когда могут быть экспериментально измерены столь маленькие концентрации, и это для нас существенно, нужно пользоваться по меньшей мере не дифференциальным, а разностным уравнением диффузии, а лучше — и более подробными микроскопической физической и статистической моделями, чтобы получить более адекватное представление о реальности в этих случаях.
Стационарное уравнение
В случае, когда ставится задача по нахождению установившегося распределения плотности или температуры (например, в случае, когда распределение источников не зависит от времени), из нестационарного уравнения выбрасывают члены уравнения, связанные со временем. Тогда получается стационарное уравнение теплопроводности, относящееся к классу эллиптических уравнений. Его общий вид:
При , не зависящем от , стационарное уравнение диффузии становится уравнением Пуассона (неоднородное), или уравнением Лапласа (однородное, то есть при ):
Постановка краевых задач
Задача с начальными условиями (задача Коши) о распределении температуры на бесконечной прямой
Если рассматривать процесс теплопроводности в очень длинном стержне, то в течение небольшого промежутка времени влияние температур на границах практически отсутствует, и температура на рассматриваемом участке зависит лишь от начального распределения температур.
Найти решение уравнения теплопроводности в области и , удовлетворяющее условию , где — заданная функция.
Первая краевая задача для полубесконечного стержня
Если интересующий нас участок стержня находится вблизи одного конца и значительно удалён от другого, то мы приходим к краевой задаче, в которой учитывается влияние лишь одного из краевых условий.
Найти решение уравнения теплопроводности в области и , удовлетворяющее условиям
где и — заданные функции.
Краевая задача без начальных условий
Если момент времени который нас интересует достаточно удалён от начального, то имеет смысл пренебречь начальными условиями, поскольку их влияние на процесс с течением времени ослабевает. Таким образом, мы приходим к задаче, в которой заданы краевые условия и отсутствуют начальные.
Найти решение уравнения теплопроводности в области и , удовлетворяющее условиям
где и — заданные функции.
Краевые задачи для ограниченного стержня
Рассмотрим следующую краевую задачу:
— уравнение теплопроводности.
Если , то такое уравнение называют однородным, в противном случае — неоднородным.
— начальное условие в момент времени , температура в точке задается функцией .
— краевые условия. Функции и задают значение температуры в граничных точках 0 и в любой момент времени .
В зависимости от рода краевых условий, задачи для уравнения теплопроводности можно разбить на три типа. Рассмотрим общий случай ().
Если , то такое условие называют условием первого рода, если — второго рода, а если и отличны от нуля, то условием третьего рода. Отсюда получаем задачи для уравнения теплопроводности — первую, вторую и третью краевую.
Пусть функция в пространстве , удовлетворяет однородному уравнению теплопроводности , причем — ограниченная область. Принцип максимума утверждает, что функция может принимать экстремальные значения либо в начальный момент времени, либо на границе области .
Примечания
↑Fick A., Ueber Diffusion, Pogg. Ann. Phys. Chem.— 1855.— 170 (4. Reihe 94).— pp. 59-86.