Таиби, Массимо
|
Read other articles:
Highest mountains in the British Isles Scafell Pike in the Lake District in Cumbria. Scafell Pike is the highest mountain in England, the 257th-highest mountain in the British Isles on the Simms classification, the 138th-highest mountain on the Marilyn classification, and the 46th-highest mountain on the P600 classification. Scafell Pike has the 13th-greatest relative height (or prominence) in the British Isles. It is also classed as a HuMP, a Furth, a Hewitt, a Nuttall, a Wainwright, a Birke...
Dean JonesDean Jones pada 1966LahirDean Carroll Jones(1931-01-25)25 Januari 1931Decatur, Morgan County, Alabama, ASMeninggal1 September 2015(2015-09-01) (umur 84)Los Angeles, California, ASSebab meninggalPenyakit ParkinsonPekerjaanPemeran, PenyanyiTahun aktif1956–2009Suami/istriMae Inez Entwisle (m. 1954; bercerai 1971)Lory Patrick (m. 1973)Anak3Orang tuaAndrew Guy dan Nolia Elizabeth Wilhite ...
Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: E-banking – berita · surat kabar · buku · cendekiawan · JSTOR Perbankan Elekronik (bahasa Inggris: E-banking) E-banking yang juga dikenal dengan istilah internet banking ini adalah kegiatan yang melakuka...
The Internet Movie Database (IMDb)URLwww.imdb.comNama singkatIMDb TipeBasis data daring tentang film, televisi, dan permainan videoPerdagangan ?YaRegistration (en)Pendaftaran opsional, anggota terdaftar bisa membuat ulasan, menyunting situs, memberi penilaian pada ulasanLangueInggrisPemilikAmazonPembuatCol Needham (CEO)Service entry (en)17 Oktober 1990; 33 tahun lalu (1990-10-17)NegaraInggris Peringkat Alexa 46 (Maret 2019[update])[1]KeadaanAktif IMDb (Internet Movie...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: 45th Rifle Division – news · newspapers · books · scholar · JSTOR (December 2012) (Learn how and when to remove this template message) 45th Rifle DivisionActive1919–19321935–1943 (1st Formation)1943–1957 (2nd Formation)1957–1997 (as 131st MRD)Country...
Questa voce o sezione sull'argomento militari spagnoli non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Fadrique Álvarez de Toledo y Ponce de LeónNascitaMadrid, 27 febbraio 1635 MorteMadrid, 9 giugno 1705 voci di militari presenti su Wikipedia Manuale Fadrique Álvarez de Toledo y Ponce de León (Madrid, 27 febbraio 1635 – Madrid, 9 giugno 170...
Hanukkah song Menorah(מְנוֹרָה) Flag of Israel Jewish andIsraeli music Religious Contemporary Piyyut Zemirot Nigun Pizmonim Baqashot Secular Klezmer Sephardic Mizrahi Mainstream and jazz Classical Jewish art music Israel Hatikvah Jerusalem of Gold We Are Both from the Same Village Dance Israeli folk dancing Ballet Horah Yemenite dancing Music for holidays Shabbat Hanukkah Blessings Oh Chanukah Dreidel song Al Hanisim Mi Y'malel Ner Li Passover (Haggadah) Ma Nishtana Dayenu Adir Hu Cha...
Brie LarsonLarson, 2018LahirBrianne Sidonie Desaulniers1 Oktober 1989 (umur 34)Sacramento, California, USAPendidikanAmerican Conservatory TheaterPekerjaanAktrispembuat filmTahun aktif1998–sekarangPasanganAlex Greenwald (2013–2019)Informasi YouTubeKanal Brie Larson Tahun aktif2020–sekarangGenre Blogger Podcasts Pelanggan664 ribu[1](8 Januari, 2022)Total tayang17.7 juta[1](8 Januari, 2022) Penghargaan Kreator 100.000 pelanggan 2020 Brie Larson (lahir 1...
Torneo di Wimbledon 1994Doppio misto Sport Tennis Vincitori Helena Suková Todd Woodbridge Finalisti Lori McNeil T. J. Middleton Punteggio 3–6, 7–5, 6–3 Tornei Singolare uomini donne ragazzi Doppio uomini donne misto 1993 1995 Voce principale: Torneo di Wimbledon 1994. Martina Navrátilová e Mark Woodforde erano i detentori del titolo ma solo Woodforde ha partecipato in coppia con Meredith McGrath. McGrathn e Woodforde hanno perso nei quarti di finale contro Pam Shriver e Byron...
American science fiction magazine (1963–1967) This article is about the science fiction magazine. For the science fiction anthology, see Worlds of Tomorrow. For the setting, see Sky Captain and the World of Tomorrow. The first issue of Worlds of Tomorrow was cover-dated April 1963 Worlds of Tomorrow was an American science fiction magazine published from 1963 to 1967, at which point it was merged into If. The first issue appeared in April 1963.[1] The last issue was published in May...
烏克蘭總理Прем'єр-міністр України烏克蘭國徽現任杰尼斯·什米加尔自2020年3月4日任命者烏克蘭總統任期總統任命首任維托爾德·福金设立1991年11月后继职位無网站www.kmu.gov.ua/control/en/(英文) 乌克兰 乌克兰政府与政治系列条目 宪法 政府 总统 弗拉基米尔·泽连斯基 總統辦公室 国家安全与国防事务委员会 总统代表(英语:Representatives of the President of Ukraine) 总...
У этого термина существуют и другие значения, см. Хорда. Для улучшения этой статьи желательно: Найти и оформить в виде сносок ссылки на независимые авторитетные источники, подтверждающие написанное.После исправления проблемы исключите её из списка. Удалите шаблон, если �...
Запрос «Третий рейх» перенаправляется сюда; об учении см. Третий рейх (мистика). Историческое государствоГерманский рейх (до 1943)Великогерманский рейх (1943—1945)нем. Deutsches Reichнем. Großdeutsches Reich Флаг Герб Девиз: «Ein Volk, ein Reich, ein Führer»«Один народ, один рейх, один фюрер» Гимн: Da...
العلاقات التوفالية الكولومبية توفالو كولومبيا توفالو كولومبيا تعديل مصدري - تعديل العلاقات التوفالية الكولومبية هي العلاقات الثنائية التي تجمع بين توفالو وكولومبيا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه ...
Questa voce o sezione sugli argomenti biologi italiani e medici italiani non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. «Per le sue scoperte del principio per introdurre specifici geni nei topi tramite cellule staminali embrionali» (Motivazione per il Premio Nobel per la medicina 2007) Mario Capecchi nel 2013 Premio Wolf per la medicina 2002 Premio No...
هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (نوفمبر 2019) دوري الدرجة الأولى الروماني 1914–15 تفاصيل الموسم دوري الدرجة الأولى الروماني...
Academic department at the Massachusetts Institute of Technology This article needs to be updated. Please help update this article to reflect recent events or newly available information. (April 2016) Building 6C is located at the core of the MIT Physics Department. Laboratories are often distributed throughout campus depending on their research areas. The MIT Department of Physics has over 120 faculty members, is often cited as the largest physics department in the United States, and hosts t...
Since the beginning of the Trump administration, the U.S. foreign policy toward China has shifted from engagement to competition.[1][2] The United States foreign policy toward the People's Republic of China originated during the Cold War. At that time, the U.S. had a containment policy against communist states. The leaked Pentagon Papers indicated the efforts by the U.S. to contain China through military actions undertaken in the Vietnam War. The containment policy centered a...
Non-departmental public body Sport EnglandFounded1996; 28 years ago (1996)FounderDepartment for Culture, Media and SportTypeNon-departmental public bodyHeadquartersLoughborough, United KingdomArea served EnglandProductFundingKey peopleTim Hollingsworth, Chief ExecutiveWebsitewww.sportengland.org Sport England is a non-departmental public body under the Department for Culture, Media and Sport. Its role is to build the foundations of a community sport system by working with na...
خط منحني. في مجال الرياضيات، يعد مصطلح النظام اللاخطي مصطلحًا لا يستوفي شروط مبدأ التراكب، أو مصطلحًا يكون ناتجه غير متناسب مباشرة مع مدخلاته، بينما يحقق النظام الخطي تلك الشروط. وبمعنى آخر، فإن النظام اللاخطي هو أية مشكلة يكون فيها المتغير (المتغيرات) المفترض حلها لا يمكن...