Сходимость по распределению

Сходи́мость по распределе́нию в теории вероятностей — вид сходимости случайных величин.

Определение

Пусть дано вероятностное пространство и определённые на нём случайные величины . Каждая случайная величина индуцирует вероятностную меру на , называемую её распределением.

Случайные величины сходятся по распределению к случайной величине , если распределения слабо сходятся к распределению , то есть

для любой непрерывной ограниченной[1][2] функции .

Замечания

  • Пользуясь теоремой о замене меры в интеграле Лебега, последнее равенство может быть переписано следующим образом:
.
  • Предел по распределению не единственнен. Если распределения двух случайных величин идентичны, то они одновременно являются или не являются пределом по распределению последовательности случайных величин.

Свойства сходимости по распределению

  • Случайные величины сходятся по распределению к , если их функции распределения сходятся к функции распределения предела во всех точках непрерывности последней:
.
почти всюду,
то . Обратное, вообще говоря, неверно!
.
Обратное, вообще говоря, неверно.

См. также

Примечания

Литература

  • В. В. Петров. Сходимость по распределению // Вероятность и математическая статистика: Энциклопедия / Гл. ред. Ю. В. Прохоров. — М.: Большая российская энциклопедия, 1999. — С. 719. — 910 с. — ISBN 5-85270-265-X.
  • Биллингсли П.[англ.]. Сходимость вероятностых мер. — М.: Наука, 1977. — 352 с.
  • Прохоров Ю. В., Прохоров А. В. Курс лекций по теории вероятностей и математической статистике. — М.: МЦНМО, 2020. — С. 17. — 144 с. — ISBN 978-5-4439-3392-4.