Лемма Бёрнсайда (или лемма Коши — Фробениуса) — классический результат комбинаторной теории групп, даёт выражение на число орбит в действии группы.
Лемма Бёрнсайда лежит в основе доказательства теоремы Редфилда — Пойи.
Число орбит равно , но по формуле орбит , где означает стабилизатор элемента , значит, сумма равна . Выпишем в столбик все элементы и напишем рядом с каждым те элементы , которые оставляют данный элемент неподвижным. Тогда произвольный элемент группы встретится такое же число раз, какое он оставляет элементы неподвижными, то есть в точности раз, а потому сумма равна сумме , что и утверждалось.
Уильям Бёрнсайд сформулировал и доказал эту лемму (без указания авторства) в одной из своих книг (1897 год), но историки математики обнаружили, что он не был первым, кто открыл её. Коши в 1845 году и Фробениусу в 1887 году также была известна эта формула. По-видимому, лемма была столь хорошо известна, что Бёрнсайд просто опустил указание авторства Коши. Поэтому эта лемма иногда называется леммой не Бёрнсайда. Это название не столь туманно, как кажется: работа Бёрнсайда была столь плодотворной, что большинство лемм в этой области принадлежит ему.