В нерелятивистской квантовой механике коэффициент прохождения и коэффициент отражения используются для описания вероятности прохождения и отражения волн, падающих на барьер. Коэффициент прохождения представляет собой отношение потока прошедших частиц к потоку падающих частиц. Он также используется для описания вероятности прохождения через барьер (туннелирование) частиц.
Коэффициент прохождения определяется в терминах тока вероятности j согласно:
где — ток вероятности падающей на барьер волны и — ток вероятности волны прошедшей барьер.
Коэффициент отражения R определяется аналогично как , где — ток вероятности волны отражённой от барьера. Сохранения вероятности, а в данном случае оно эквивалентно сохранению числа частиц накладывает условие на коэффициенты прохождения и отражения .
Используя ВКБ приближение, можно получить туннельный коэффициент, который записывается в виде:
,
где — две классические точки поворота для потенциального барьера. Если мы возьмём классический предел, где все остальные физические параметры намного больше постоянной Планка, записанный как , то мы увидим, что коэффициент прохождения стремится к нулю. Этот классические предел нарушается в случае нефизического (в силу неприменимости квазиклассического приближения), но более простого случая прямоугольного барьера.
Если коэффициент прохождения много меньше 1, формулу можно записать в виде: