Над сигналами, записанными в подобной форме, алгебраически неудобно производить такие арифметические операции, как сложение двух сигналов, вычитание из одного сигнала другого сигнала. С целью облегчения этих операций гармонические сигналы представляют в виде комплексного числа, модуль которого равен амплитуде сигнала, а аргумент — фазе сигнала. Воспользовавшись формулой Эйлера:
.
Оригинальный сигнал a(t) равен действительной части данного комплексного числа:
При этом ,
тогда комплексная амплитуда гармонического сигнала определяется следующим выражением:
.
Физический смысл
Алгебраическая форма
Если рассматривать комплексную амплитуду как комплексное число в алгебраической форме, то действительная часть соответствует амплитуде косинусной (синфазной) компоненты, а мнимая — амплитуде синусной (квадратурной) компоненты исходного сигнала. Так, для сигнала (1) имеем:
где
Тригонометрическая форма
Если рассматривать комплексную амплитуду как комплексное число в тригонометрической форме, то модуль соответствует амплитуде исходного гармонического сигнала, а аргумент — сдвигу фазы исходного гармонического сигнала относительно сигнала .
Операции над комплексной амплитудой
К сигналам в пространстве комплексных амплитуд могут быть применены линейные операции. Другими словами, перечисленные ниже операции над комплексными амплитудами:
умножение комплексной амплитуды на константу
сложение комплексных амплитуд (соответствующих одной и той же частоте)
вычитание комплексных амплитуд (соответствующих одной и той же частоте)
приводят к такому же результату, как если бы они были проделаны над соответствующими гармоническими сигналами, а затем от них взята комплексная амплитуда.
Ограничения
Несмотря на то, что в выражение для комплексной амплитуды не входит частота ω гармонического сигнала, следует помнить, что комплексная амплитуда описывает гармонический сигнал конкретной частоты. Поэтому в пространстве комплексных амплитуд недопустимы операции, которые:
принимают в качестве операндов комплексные амплитуды, описывающие гармонические сигналы разных частот.
меняют частоту гармонического сигнала или порождают новые частоты (все нелинейные операции, например, перемножение двух сигналов).
Применение
Комплексная амплитуда является полным и очень удобным способом описания гармонических сигналов, поскольку:
Характеризует и амплитуду, и фазу
Не содержит зависимости от времени
Позволяет использовать векторные диаграммы для анализа цепей на переменном токе