Държавен вестник
|
Read other articles:
Ikan soang Sladenia shaefersi Klasifikasi ilmiah Kerajaan: Animalia Filum: Chordata Kelas: Actinopterygii Ordo: Lophiiformes Famili: LophiidaeRafinesque, 1810 Genus[1] Eosladenia (Punah) Lophiodes Lophiomus Lophius Sharfia (Punah) Sladenia Ikan soang adalah sebutan ikan sungut ganda (Lophiiformes) dalam keluarga Lophiidae. Ikan ini ditemukan di samudra yang ada di seluruh dunia. Mereka hidup di dasar lautan berpasir dan berlumpur di landas kontinen dan lereng benua hingga kedalaman l...
Sepasang singa batu di Kota Terlarang Singa batu (hanzi: 石狮子; pinyin: shíshīzi) adalah patung batu berbentuk mirip singa yang merupakan hiasan bagi bangunan dengan arsitektur tradisional Cina. Sepasang singa batu biasanya diletakkan di depan pintu gerbang istana kaisar, kuil Buddha, vihara, pagoda, makam kaisar, kantor dan kediaman pejabat tinggi, hingga sebagai penghias jembatan, taman, hotel, dan rumah makan. Patung singa batu dibuat dalam berbagai ukuran, bisa dipahat dari marmer a...
Konsonan sengau langit-langitɲNomor IPA118Pengkodean karakterEntitas (desimal)ɲUnikode (heks)U+0272X-SAMPAJKirshenbaumn^Braille Gambar Sampel suaranoicon sumber · bantuan Konsonan sengau langit-langit adalah adalah jenis dari suara konsonan, digunakan dalam berbagai bahasa. Simbol IPAnya adalah ɲ. Simbol IPA tersebut adalah huruf n kecil dengan ekor menunjuk ke kiri. Berbeda dengan konsonan sengau tarik-belakang, disimbolkan dengan ɳ yang berarti huruf n kecil dengan...
Cinema of Pakistan List of Pakistani films Pakistani Animation Highest Grossing Pre 1950 1950s 1950 1951 1952 1953 19541955 1956 1957 1958 1959 1960s 1960 1961 1962 1963 19641965 1966 1967 1968 1969 1970s 1970 1971 1972 1973 19741975 1976 1977 1978 1979 1980s 1980 1981 1982 1983 19841985 1986 1987 1988 1989 1990s 1990 1991 1992 1993 19941995 1996 1997 1998 1999 2000s 2000 2001 2002 2003 20042005 2006 2007 2008 2009 2010s 2010 2011 2012 2013 20142015 2016 2017 2018 2019 2020s 2020 2021 2022 2...
العلاقات الإسرائيلية الغينية إسرائيل غينيا إسرائيل غينيا تعديل مصدري - تعديل العلاقات الإسرائيلية الغينية هي العلاقات الثنائية التي تجمع بين إسرائيل وغينيا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة...
Cet article est une ébauche concernant une commune de la Haute-Corse. Vous pouvez partager vos connaissances en l’améliorant (comment ?). Le bandeau {{ébauche}} peut être enlevé et l’article évalué comme étant au stade « Bon début » quand il comporte assez de renseignements encyclopédiques concernant la commune. Si vous avez un doute, l’atelier de lecture du projet Communes de France est à votre disposition pour vous aider. Consultez également la page d’a...
Questa voce sugli argomenti politici italiani e partigiani italiani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Luigi Fabbri Senatore della Repubblica ItalianaDurata mandato1948 –1963 LegislaturaI, II, III GruppoparlamentarePSI CircoscrizioneUmbria CollegioTerni Sito istituzionale Deputato del Regno d'ItaliaLegislaturaXXVI, XXVII GruppoparlamentareSocialista Sito istituzionale D...
Ukrainian footballer (born 1996) In this name that follows Eastern Slavic naming customs, the patronymic is Volodymyrovych and the family name is Zinchenko. Oleksandr Zinchenko Zinchenko with Arsenal in 2023Personal informationFull name Oleksandr Volodymyrovych Zinchenko[1]Date of birth (1996-12-15) 15 December 1996 (age 27)[2]Place of birth Radomyshl, UkraineHeight 1.75 m (5 ft 9 in)[3]Position(s) Left-back, midfielderTeam informationCurrent te...
Сунь Ятсен — автор «трёх народных принципов» Три народных принципа (доктрина Саньминь, кит. трад. 三民主義, упр. 三民主义, пиньинь Sān Mín Zhǔyì, палл. сань минь чжуи) — политическая доктрина, разработанная китайским политиком и философом Сунь Ятсеном. Часть политической �...
Award1980 Summer Olympics medalsLocationMoscow, Soviet UnionHighlightsMost gold medals Soviet Union (80)Most total medals Soviet Union (195) ← 1976 · Olympics medal tables · 1984 → Part of a series on1980 Summer Olympics Bid process (bid details) Boycott Development (venues, torch relay) Marketing (mascot) Broadcasters Opening ceremony (flag bearers) Chronological summary Medal table (medallists) Olympic records World records Contro...
Cercatori d'oro sulle Montagne Rocciose dell'ovest del Territorio del Kansas. La corsa all'oro di Pike's Peak (più tardi nota come corsa all'oro del Colorado) fu il boom della prospezione ed estrazione mineraria dell'oro nella zona di Pike's Peak nella parte occidentale del Territorio del Kansas e in quella sudoccidentale del Territorio del Nebraska, degli Stati Uniti d'America. Essa ebbe inizio nel luglio del 1858 e durò grosso modo fino alla creazione del Territorio del Colorado, il 28 fe...
Eaton Hotel redirects here. Not to be confused with Carey House (Wichita, Kansas). Hotel in Kowloon, Hong Kong Eaton HK香港逸東酒店Eaton HKGeneral informationAddress380 Nathan Road in KowloonTown or cityHong KongOpened1 November 1990; 33 years ago (1990-11-01)Renovated2018; 6 years ago (2018)Other informationNumber of rooms465 Rooms, 5 Suites Eaton Hotel Hong KongTraditional Chinese香港逸東酒店Simplified Chinese香港逸东酒店Transcripti...
1960 British comedy film by Gerald Thomas This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Carry On Constable – news · newspapers · books · scholar · JSTOR (October 2018) (Learn how and when to remove this message) Carry On ConstableOriginal UK quad posterDirected byGerald ThomasScreenplay byPeter RogersNorma...
The Devil DancerSutradaraFred NibloProduserSamuel GoldwynDitulis olehAlice D. G. Miller (permainan latar)Harry Hervey (cerita)Edwin Justus Mayer (intertitel)SinematograferGeorge BarnesThomas BranniganPerusahaanproduksiSamuel Goldwyn ProductionsDistributorUnited ArtistsTanggal rilis 19 November 1927 (1927-11-19) Durasi73 menitNegaraAmerika SerikatBahasaFilm bisu The Devil Dancer (1927) adalah sebuah film fitur bisu Amerika, yang disutradarai oleh Fred Niblo dan diproduksi oleh Samuel Gold...
عولمةمعلومات عامةصنف فرعي من تآثر سُمِّي باسم الكرة الأرضية الأسباب تجارة دوليةدبلوماسيةسفر تسبب في تعدد الثقافاتصراع ثقافي يدرسه دراسات العولمةدراسات دولية النقيض deglobalization (en) triadization (en) تعديل - تعديل مصدري - تعديل ويكي بيانات جُزء من سلسلة مقالات حولالرأسمالية مفاهيم عم...
Credit ratings for state debt from S&P Global as of May 2021 AAA AA+ AA AA− A+ A A− BBB+ BBB BBB- and below Credit ratings for state debt from Moody's as of May 2021. Aaa Aa1 Aa2 Aa3 A1 A2 A3 Baa1 Baa2 Baa3 and below Not rated Credit ratings for state debt ...
Garza RevolutionCatarino Erasmo Garza, the leader of the Garza Revolution.DateSeptember 15, 1891 – March 1893LocationCoahuila (Mexico)Texas (United States)Result Joint Mexico/U.S. victory Garzista rebellion suppressedBelligerents Mexico United States GarzistasCommanders and leaders Porfirio Díaz Frank Wheaton Catarino GarzaFrancisco Benavides vteMexican–American wars(1845–1920) Capture of Monterey Mexican-American War Taos Revolt Cortina Troubles William Walker's expedition to Baj...
Process of changing one type of television system to another This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Television standards conversion – news · newspapers · books · scholar · JSTOR (January 2023) (Learn how and when to remove this message) Television standards conversion is the process of changing a te...
Edge city in Texas, United StatesDel ValleEdge cityDel Valle—COTA—ABIA areaCountryUnited StatesStateTexasCountyTravisSettled1812Austin purchase1942Government • TypeAustin extraterritorial jurisdictionArea(Historical)[1] • Total44,000 acres (18,000 ha)Elevation482 ft (147 m)Population (2010-2019) • Total300 • Density4.4/sq mi (1.7/km2) • Traffic200,000+ vehicles (AADT)[2] •...
Polyhedron with non-planar faces In geometry, the regular skew polyhedra are generalizations to the set of regular polyhedra which include the possibility of nonplanar faces or vertex figures. Coxeter looked at skew vertex figures which created new 4-dimensional regular polyhedra, and much later Branko Grünbaum looked at regular skew faces.[1] Infinite regular skew polyhedra that span 3-space or higher are called regular skew apeirohedra. History According to Coxeter, in 1926 John Fl...