Гомоморфизм (от др.-греч. ὁμός — равный, одинаковый и μορφή — вид, форма) — это морфизм в категории алгебраических систем, то есть отображение алгебраической системы А, сохраняющее основные операции и основные отношения.
Определение
Отображение называется гомоморфизмом групп , , если оно одну групповую операцию переводит в другую: , то есть образ произведения равен произведению образов.
Понятие гомоморфизма как соотношение между парой алгебраических систем начало использоваться в работах немецкого математика Фробениуса, а обобщённое определение было сформулировано Эмми Нётер в 1929 году. Частными случаями гомоморфизма являются изоморфизм и автоморфизм[1]. Некоторая общая теория, уточняющая понятия гомоморфизма, изоморфизма и морфизма, предложена известной группой французских математиков Николя Бурбаки в их книге «Теория множеств» (Глава IV, § 2).
Связанные определения
- Гомоморфный образ — образ математического объекта, имеющего структуру полугруппы, группы, кольца, алгебры при гомоморфном отображении. Иногда говорят и о гомоморфных образах других математических объектов, например, графов.
- Ядро гомоморфизма
Свойства
Ядро гомоморфизма является нормальной подгруппой. Гомоморфный образ группы изоморфен факторгруппе по ядру гомоморфизма (теорема о гомоморфизме).
Типы гомоморфизмов
См. также
Примечания
Литература
Корн Г., Корн Т. Справочник по математике — 1970, с. 332 (1974, с. 373).
Ссылки на внешние ресурсы |
---|
| |
---|
Словари и энциклопедии | |
---|
В библиографических каталогах | |
---|