Гипотеза Пойи

График сумм вплоть до . Колебания обусловлены первыми нетривиальными нулями дзета-функции Римана.
Отрезок, на котором впервые нарушается гипотеза Пойи, крупным планом.
Логарифмический график вплоть до . Зелёным выделен участок, в котором происходит первое нарушение гипотезы. Синяя кривая показывает вклад нетривиальных нулей дзета-функции Римана в колебания функции .

Гипотеза Пойи — гипотеза в теории чисел, выдвинутая Дьёрдем Пойей в 1919 году и опровергнутая Хейзелгроувом в 1958 году. Значение наименьшего контрпримера к ней — 906 150 257 — часто используется как иллюстрация к тому, что даже гипотезы, проверенные на огромных числовых промежутках, могут быть опровергнуты и требуют строгих доказательств.

Гипотеза утверждает, что не меньше половины натуральных чисел, меньших любого заранее фиксированного числа, разлагаются на нечётное количество простых множителей с учётом кратности, то есть для любого выполнено неравенство:

,

где  — функция Лиувилля, принимающая значение , если разлагается на чётное количество простых множителей с учётом кратности, и в противном случае. Здесь фраза «с учётом кратности» означает, что каждый множитель учитывается количество раз, равное его степени в разложении.

Гипотеза была опровергнута в 1958 году Хейзелгроувом, показавшим, что существует контрпример, и оценившим его в примерно . Первый конкретный контрпример был найден Шерманом-Леманом в 1960 году — 906 180 359. В 1980 году был вычислен наименьший контрпример — 906 150 257. Гипотеза ложна для большинства чисел между 906 150 257 и 906 488 079; максимум, которого достигает в этом диапазоне — 829 (для 906 316 571). Неизвестно, меняет ли знак бесконечное количество раз[1].

Нули функции

Нули функции распределены крайне неравномерно, их последовательность начинается следующим образом[2]:

2; 4; 6; 10; 16; 26; 40; 96; 586; 906 150 256; 906 150 294; 906 150 308; 906 150 310; 906 150 314, …

Медленный рост продолжается вплоть до члена под номером 252, равного 906 488 080, а следующий член уже равен 351 100 332 278 250.

Примечания

  1. Weisstein, Eric W. Pólya Conjecture (англ.) на сайте Wolfram MathWorld.
  2. последовательность A028488 в OEIS

Ссылки