Асимметри́чное отноше́ние в математике — бинарное отношение на некотором множестве обладающее для любых из следующим свойством «невзаимности»[1]: если связано данным отношением с то не связано с . Формальная запись:
Примером может служить отношение «меньше» между вещественными числами: если , то невозможно, чтобы одновременно . Напротив, отношение «меньше или равно» не является асимметричным, так как в случае верны оба неравенства: Другой пример: отношение «быть родителем».
Из определения вытекает, что для непустого асимметричного отношения ситуация невозможна ни для какого элемента Такие отношения называют антирефлексивными (в другой терминологии, иррефлексивными).
Антиподом асимметричного является симметричное отношение, для которого отношение всегда взаимно: если то Единственное бинарное отношение, одновременно симметричное и асимметричное — это пустое отношение.
Не следует путать асимметричное и антисимметричное отношение — последнее не исключает возможности и одновременно, если Упомянутое выше отношение «меньше или равно» антисимметрично, но не асимметрично. Общее правило[2]:
Бинарное отношение асимметрично тогда и только тогда, когда оно антисимметрично и при этом антирефлексивно.
Если отношение асимметрично, то его обращение и сужение также асимметричны. Например, ограничение вещественного отношения «меньше» на целые числа асимметрично, таково же и его обращение — отношение «больше».
Транзитивное отношение асимметрично тогда и только тогда, когда оно антирефлексивно[3]. В самом деле, и в силу транзитивности влечёт откуда видно, что «взаимные отношения» невозможны.
Следствие: отношение является транзитивным и асимметричным тогда и только тогда, когда это строгий частичный порядок.
Не все асимметричные отношения представляют строгий частичный порядок. Пример: отношение типа «камень, ножницы, бумага» является асимметричным, но не транзитивным (даже «антитранзитивным»):
если одолевает , то не одолевает
если одолевает и одолевает то не одолевает .
Асимметричное отношение не обязано быть полным[англ.], то есть нет гарантии, что для любой пары элементов имеет место или Например, отношение «быть собственным подмножеством» асимметрично, однако не все подмножества связаны им в ту или иную сторону.
↑Gries, David; Schneider, Fred B. (1993), A Logical Approach to Discrete Math, Springer-Verlag, p. 273{{citation}}: Указан более чем один параметр |first1= and |first= (справка); Указан более чем один параметр |last1= and |last= (справка).
↑Nievergelt, Yves (2002), Foundations of Logic and Mathematics: Applications to Computer Science and Cryptography, Springer-Verlag, p. 158{{citation}}: Указан более чем один параметр |first1= and |first= (справка); Указан более чем один параметр |last1= and |last= (справка).
↑Flaška, V.; Flaška, V.; Ježek, J.; Kepka, T.; Kortelainen, J.Transitive Closures of Binary Relations I (англ.). — Prague: School of Mathematics - Physics Charles University, 2007. — P. 1. Архивировано 2 ноября 2013 года.Архивированная копия (неопр.). Дата обращения: 2 сентября 2018. Архивировано из оригинала 2 ноября 2013 года. Lemma 1.1 (iv). Note that this source refers to asymmetric relations as "strictly antisymmetric".
Литература
Алескеров Ф. Т., Хабина Э. Л., Шварц Д. А. Бинарные отношения, графы и коллективные решения. — М.: Учебники Высшей школы экономики, 2006. — 300 с.