Teorema coardelor concurente

În geometria euclidiană teorema coardelor concurente sau doar teorema coardelor este o afirmație din geometria elementară care descrie o relație a celor patru segmente de dreaptă create de două coarde care se intersectează în interiorul unui cerc. Ea spune că produsele lungimilor segmentelor de pe fiecare coardă sunt egale. Aceasta este propoziția nr. 35 din Cartea a III-a a Elementelor lui Euclid.[1]

Mai exact, pentru două coarde AC și BD care se intersectează într-un punct, S, este valabilă următoarea egalitate:

Teorema reciprocă este și ea adevărată: dacă pentru două segmente AC și BD care se intersectează în S, ecuația de mai sus este valabilă, atunci cele patru puncte finale ale acestora, A, B; C și D se află pe un cerc comun. Sau, cu alte cuvinte, dacă diagonalele unui patrulater ABCD se intersectează în S și îndeplinesc ecuația de mai sus, atunci acesta este un patrulater inscriptibil.

Valoarea celor două produse din teorema coardelor depinde doar de distanța punctului de intersecție S de centrul cercului și se numește valoarea absolută a puterii punctului S față de cerc⁠(d). Mai exact, se poate afirma că:

unde r este raza cercului, iar d este distanța dintre centrul cercului și punctul de intersecție, S. Această proprietate decurge direct din aplicarea teoremei coardelor la o a treia coardă, care trece prin S și centrul cercului M (v. figura de alături).

Teorema poate fi demonstrată folosind triunghiuri asemenea (comparând unghiurile înscrise). Se iau în considerare unghiurile triunghiurilor ASD și BSC:

(unghi înscris, subîntins arcului AB)
(unghi înscris, subîntins arcului CD)
(unghiuri opuse)

Asta înseamnă că triunghiurile ASD și BSC sunt asemenea, prin urmare

Alături de teorema tangentei și a secantei și teorema secantelor concurente, teorema coardelor concurente prezintă unul dintre cele trei cazuri de bază ale unei teoreme mai generale despre două drepte care se intersectează și un cerc, teorema puterii punctului față de cerc.

Note

  1. ^ Euclid Elementele, accesat 2023-06-28

Bibliografie

  • en Paul Glaister: Intersecting Chords Theorem: 30 Years on. Mathematics in School, Vol. 36, No. 1 (Jan., 2007), p. 22 (JSTOR)
  • en Bruce Shawyer: Explorations in Geometry. World scientific, 2010, ISBN: 9789813100947, p. 14
  • de Hans Schupp: Elementargeometrie. Schöningh, Paderborn 1977, ISBN: 3-506-99189-2, p. 149 (German).
  • de Schülerduden - Mathematik I. Bibliographisches Institut & F.A. Brockhaus, 8. Auflage, Mannheim 2008, ISBN: 978-3-411-04208-1, pp. 415-417 (German)

Legături externe

Read other articles:

Nel seguente testo sull'argomento economia è presente una sospetta violazione di copyright. Motivo: tipologia di inserimento È sconsigliato wikificare o ampliare il testo attuale, che potrebbe essere cancellato. Puoi invece riformulare il testo con parole tue o partecipare alla discussione. Segui i suggerimenti del progetto di riferimento.Avvisa l'autore: {{Avvisocontrolcopy|voce=Partita doppia finanziaria}}--~~~~ Questa voce o sezione sull'argomento economia non cita le fon...

 

 

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Donat kampung – berita · surat kabar · buku · cendekiawan · JSTORArtikel ini berisi konten yang ditulis dengan gaya sebuah iklan. Bantulah memperbaiki artikel ini dengan menghapus konten yang dianggap sebagai...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Delusi CotardAhli saraf Jules Cotard (1840-1889) menggambarkan The Delirium of Negation sebagai penyakit mental dengan tingkat keparahan yang bervariasi.Informasi umumNama lainSindrom Cotard, Sindrom mayat hidupSpesialisasiPsikiatri Delusi Cotard alias...

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Bata ringan – berita · surat kabar · buku · cendekiawan · JSTOR artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Tidak ada alasan yang diberikan. Silakan kembangkan artikel ini semampu Anda. ...

 

 

Holden Commodore (VB) adalah Kendaraan jenis sedan, Holden Commodore generasi pertama dengan seri VB yang diproduksi oleh Holden. Mobil ini resmi diluncurkan pada tanggal 26 Oktober 1978 dan diproduksi pada bulan Oktober 1978 hingga bulan Maret 1980. Dan mobil ini diproduksi sebanyak 95,906 unit. Holden Commodore (VB) Wikimedia Commons memiliki media mengenai Holden Commodore (VB). Pranala luar 100 kilometer per jam (62 mph) Holden VB Commodore crash test. Golden Holdens: VB Commodore (1...

 

 

David Ogden StiersStiers pada bulan Agustus 1977Nama lahirDavid Allen Ogden StiersLahir(1942-10-31)31 Oktober 1942Peoria, Illinois, A.S.Meninggal3 Maret 2018(2018-03-03) (umur 75)Newport, Oregon, A.S.MediaTunggal, televisi, filmKebangsaanAmerika SerikatGenreKomedi observasionalSubjekImpresion, budaya pop David Allen Ogden Stiers (31 Oktober 1942 – 3 Maret 2018) adalah seorang komedian tunggal, aktor, penyanyi, impresionis, artis pengisi suara, dan komedian Amerika yang paling dikenal k...

For the town, see Abtu, Afghanistan. Abtu (Ancient Egyptian: ꜣbḏw) is the name of a sacred fish, according to Egyptian mythology, and of the city of Abydos,[1] the place where Osiris and the early rulers of Egypt were buried. Abtu as word Abtu was also the ancient word for the western or west of something. This was then understood as the place where the days passage of the sun across the sky finishes so for ancient Egypt where the sun dies each day and passes into the dark underwo...

 

 

1[pranala nonaktif permanen] – Layar agung 2 – Layar bubutan 3 – Layar dastur 4 – Lambung 5 – Lunas 6 – Kemudi 7 – Skeg 8 – Tiang 9 – Spreader 10 – Tambera 11 – Tali kelat 12 – Bom 13 - Tiang 14 – Galah dastur 15 – Tahan turut 16 – Tali pengangguk 17 – Tali lalei bom Sebuah tahan turut, temberang buritan, temberang belakang, temberang turut atau bubutan belakang (backstay) adalah sepotong tali-temali berdiri di atas kapal berlayar yang membentang dari t...

 

 

1943 film by William A. Wellman Lady of BurlesqueDVD coverDirected byWilliam A. WellmanWritten byJames GunnBased onThe G-String Murders1941 novelby Gypsy Rose LeeProduced byHunt StrombergStarringBarbara StanwyckMichael O'SheaIris AdrianCinematographyRobert De GrasseEdited byJames E. NewcomMusic byArthur LangeDistributed byUnited ArtistsRelease date May 1, 1943 (1943-05-01) Running time91 minutesCountryUnited StatesLanguageEnglishBox office$1,850,000 gross Lady of Burlesque (als...

Politics of Curaçao Constitution Governor Lucille George-Wout Prime Minister Gilmar Pisas Cabinet Parliament Political parties Elections: 2010, 2012, 2016, 2017, 2021 Referendums: 1993, 2005, 2009 Other countries vte The Prime Minister of Curaçao is the head of government of Curaçao. The post was created after the Netherlands Antilles had been dissolved on 10 October 2010 and Curaçao became a country within the Kingdom of the Netherlands. The Prime Minister, together with his Council of M...

 

 

American politician and businessman (born 1947) This article is about the American politician. For the football player who went by the same name, see Milton Romney. For the singer with a similar sounding name, see Ritt Momney. Mitt RomneyOfficial portrait, 2019United States Senatorfrom UtahIncumbentAssumed office January 3, 2019Serving with Mike LeePreceded byOrrin Hatch70th Governor of MassachusettsIn officeJanuary 2, 2003 – January 4, 2007LieutenantKerry HealeyPre...

 

 

Dessin du macuahuitl détruit en 1884 lors de l'incendie de la Real Armería de Madrid (illustration publiée dans La Armería Real ou collection des principales pièces de la Galerie d'Armes Anciennes de Madrid, d'Achille Jubinal, en 1846)[1]. Un macuahuitl[2] (mot nahuatl dérivé de « maitl », signifiant « main », et « cuahuitl », signifiant « bâton »[3], et qui est à l'origine de son synonyme espagnol « macana ») est une arme b...

BC LionsJulukanLeoBerdiri1954PemilikAmar DomanManajerNeil McEvoy danRick Campbell (wakil manajer umum)PelatihRick CampbellLigaLiga Sepak Bola KanadaSitus web[BCLions.com Situs web resmi klub] Musim ini BC Lions adalah tim sepak bola Kanada yang berbasis di Vancouver, British Columbia. BC Lions berkompetisi di Divisi Barat dari Liga Sepak Bola Kanada (CFL), dan bermain di kandang mereka di BC Place. The Lions memainkan musim pertama mereka di 1954, dan telah bermain setiap musim sejak itu...

 

 

Sceaux 行政国 フランス地域圏 (Région) イル=ド=フランス地域圏県 (département) オー=ド=セーヌ県郡 (arrondissement) アントニー郡小郡 (canton) 小郡庁所在地INSEEコード 92071郵便番号 92330市長(任期) フィリップ・ローラン(2008年-2014年)自治体間連合 (fr) メトロポール・デュ・グラン・パリ人口動態人口 19,679人(2007年)人口密度 5466人/km2住民の呼称 Scéens地理座標 北緯48度4...

 

 

Данио-рерио Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеГруппа:Костные рыбыКласс:Лучепёрые рыбыПодкласс:Новопёрые рыбыИн�...

Softball Tournament 2023 Little League Softball World SeriesTournament detailsDatesAugust 6–August 13Teams12Final positionsChampions Massapequa, New York Massapequa International LLRunner-up Winterville, North Carolina Pitt County Girls Softball LL Stallings Stadium in Greenville served as host The 2023 Little League Softball World Series was held in Greenville, North Carolina from August 6 to August 13, 2023.[1] Teams Each team that competed in the tournament came out of one of 12 ...

 

 

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (مايو 2021) نيبيراو الأول   معلومات شخصية تاريخ الميلاد القرن 17 ق.م  تاريخ الوفاة القرن ...

 

 

Present and former academic libraries in Leuven, Belgium The current central library of the Catholic University of Leuven, rebuilt after the fire of 1940. The city of Leuven in Belgium was the seat of three successive universities, each of which had a notable academic library. The Library of the Old University The Old University of Leuven founded in 1425 had a collegiate structure with no central library. Students probably had access to manuscripts and printed books preserved in their college...

Senior Royal Australian Air Force officer Mark Donald BinskinBinskin in April 2018Born (1960-03-20) 20 March 1960 (age 64)SydneyAllegianceAustraliaService/branchRoyal Australian Navy (1978–84)Royal Australian Air Force (1984–2018)Royal Australian Air Force Reserve (2018-Present)Years of service1978–PresentRankAir Chief MarshalCommands heldChief of the Defence Force (2014–18)Vice Chief of Defence Force (2011–14)Chief of Air Force (2008–11)RAAF Air Command (2007–08)Air C...

 

 

Machine used to spin cotton and other fibres A working mule spinning machine at Quarry Bank Mill The only surviving example of a spinning mule built by the inventor Samuel Crompton The spinning mule is a machine used to spin cotton and other fibres. They were used extensively from the late 18th to the early 20th century in the mills of Lancashire and elsewhere. Mules were worked in pairs by a minder, with the help of two boys: the little piecer and the big or side piecer. The carriage carrie...