Sebastian Larsson
|
Read other articles:
BanavasidesaKuil Madhukeshwara di BanavasiJulukan: Pampana BanavasiBanavasiLokasi di Karnataka, IndiaTampilkan peta IndiaBanavasiBanavasi (Karnataka)Tampilkan peta KarnatakaKoordinat: 14°32′03″N 75°01′04″E / 14.5341°N 75.0177°E / 14.5341; 75.0177Koordinat: 14°32′03″N 75°01′04″E / 14.5341°N 75.0177°E / 14.5341; 75.0177Negara IndiaNegara bagianKarnatakaDistrikUttara KannadaPopulasi (2005) • Total4...
Aquinas beralih ke halaman ini. Untuk kegunaan lain, lihat Aquinas (disambiguasi). Santo Thomas AquinasLatar sebuah altar di Ascoli Piceno, Italia, karya Carlo Crivelli (abad ke-15)Pujangga GerejaLahir1225Roccasecca, Kerajaan SisiliaMeninggal7 Maret 1274 – 1225; umur -50–-49 tahunFossanova, Negara GerejaDihormati diGereja KatolikKomuni AnglikanLutheranismeKanonisasi18 Juli 1323, Avignon, Negara Gereja oleh Paus Yohanes XXIITempat ziarahGereja Jacobins, Toulouse, PrancisPesta2...
Ivan CapelliIvan Capelli di Grand Prix Amerika Serikat 1991Lahir24 Mei 1963 (umur 60)Karier Kejuaraan Dunia Formula SatuKebangsaan ItaliaTahun aktif1985 - 1993TimTyrrell, AGS, March, Leyton House, Ferrari and JordanJumlah lomba98 (93 starts)Juara dunia0Menang0Podium3Total poin31Posisi pole0Lap tercepat0Lomba pertamaGrand Prix Eropa 1985Lomba terakhirGrand Prix Brasil 1993 Ivan Franco Capelli (lahir 24 Mei 1963) adalah seorang mantan pembalap Formula Satu asal Italia. Ia turun pertam...
جين آشر (بالإنجليزية: Jane Asher) معلومات شخصية الميلاد 5 أبريل 1946 (العمر 78 سنة)لندن، إنجلترا مواطنة المملكة المتحدة لون الشعر شعر أصهب الزوج جيرالد سكارف إخوة وأخوات بيتر آشر الحياة العملية المدرسة الأم الأكاديمية الملكية للفنون المسرحية تعلمت لدى هيلدا هولغ...
Сибирский горный козёл Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:СинапсидыКла�...
Questa voce sull'argomento calciatori italiani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Francesco Varicelli Nazionalità Italia Calcio Ruolo Difensore Termine carriera 1959 CarrieraGiovanili 19??-1942 SavonaSquadre di club1 1942-1943 Cairese10 (0)1945-1947 Savona40+ (?)1947-1949 Cremonese67 (0)1949-1950 SPAL37 (1)1950-1953 Livorno32 (0)1956-1957 Savona25 ...
Азиатский барсук Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:СинапсидыКласс:Мле�...
Masaichi NagataNagata pada acara Oscar 1955Lahir(1906-01-21)21 Januari 1906Kyoto, JepangMeninggal24 Oktober 1985(1985-10-24) (umur 79)Tokyo, JepangPekerjaanPresiden Daiei, produser film, eksekutif bisbolTahun aktif1925–1980Anak2[1]{{{name}}}Anggota dari Jepang Baseball Hall of Fame Dilantik1988 Masaichi Nagata (永田 雅一code: ja is deprecated , Nagata Masaichi, 21 Januari 1906 – 24 Oktober 1985) adalah seorang pengusaha Jepang dan menjabat sebagai pres...
American actor (b. 1949) For his father, see Ed Begley. Ed Begley Jr.Begley in 2014BornEdward James Begley Jr. (1949-09-16) September 16, 1949 (age 74)Los Angeles, California, U.S.Alma materLos Angeles Valley CollegeOccupation(s)Actor, environmentalistYears active1967–presentSpouses Ingrid Taylor (m. 1976–1989) Rachelle Carson (m. 2000) Children3ParentEd Begley (father)Websiteedbegley.com ...
国民阵线Barisan NasionalNational Frontباريسن ناسيونلபாரிசான் நேசனல்国民阵线标志简称国阵,BN主席阿末扎希总秘书赞比里署理主席莫哈末哈山总财政希山慕丁副主席魏家祥维纳斯瓦兰佐瑟古律创始人阿都拉萨成立1973年1月1日 (1973-01-01)[1]设立1974年7月1日 (1974-07-01)前身 联盟总部 马来西亚 吉隆坡 50480 秋傑区敦依斯迈路太子世贸中心(英�...
Korean samurai (1585–1660) Wakita Naokata (脇田 直賢, 1585 – 1660), Korean name Gim Yeocheol (Korean: 김여철; Hanja: 金如鉄), was a samurai who served the Maeda clan in the early Edo period. He was born in Joseon and was eventually given the position of Commissioner of Kanazawa city.[1] Born in Hanseong (now Seoul, of South Korea), Naokata's birth name was Gim Yeocheol. He was the son of Gim Si-seong (金時省, 김시성), an official of the Joseon...
This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Brazilian science fiction – news · newspapers · books · scholar · JSTOR (March 2020) You can help expand this article with text translated from the corresponding article in Portuguese. (July 2016) Click [show] for important translation instructi...
1911 Australian filmIt Is Never Too Late to MendDaily Telegraph 21 January 1911Directed byW. J. Lincoln[3]Written byW. J. Lincoln[4]Based onthe novel by Charles Readeadapted into a play by Charles ReadeProduced byJohn TaitNevin TaitMillard JohnsonWilliam GibsonStarringStanley WalpoleCinematographyOrrie Perry[5]ProductioncompaniesJohnson and GibsonDistributed byJ & N Tait (Australia)Sawyer's Pictures (USA)Release dates 7 January 1911 (1911-01-07) ...
2024 Indian general election ← 2019 19 April – 1 June 2024 (2024-04-19 – 2024-06-01) Next → ← outgoing memberselected members →All 543 seats in the Lok Sabha272 seats needed for a majorityOpinion pollsRegistered968,821,926[1] ( 6.24%)Turnout65.79% ( 1.61 pp)[2] First party Second party Leader Narendra Modi Mallikarjun Kharge Party BJP INC Alliance NDA INDIA Leader since 12 Se...
List of events ← 1955 1954 1953 1956 in New Zealand → 1957 1958 1959 Decades: 1930s 1940s 1950s 1960s 1970s See also: History of New Zealand List of years in New Zealand Timeline of New Zealand history The following lists events that happened during 1956 in New Zealand. Population Estimated population as of 31 December: 2,209,200.[1] Increase since 31 December 1955: 44,400 (2.05%).[1] Males per 100 females: 101.2.[1] Incumbents Regal and viceregal Head of ...
This article is about a boma village in South Sudan called Kolnyang. For Kolnyang Payam, see Kolnyang. Boma village in Jonglei State, South SudanKolnyang boma villageKolnyangCoordinates: 6°07′33.2″N 31°44′22.7″E / 6.125889°N 31.739639°E / 6.125889; 31.739639CountrySouth SudanStateJonglei StateCountyBor South County (since 2016) [1] PayamKolnyang Kolnyang is a boma in Kolnyang payam, Bor South County, Jonglei State, South Sudan. Demographics Accordi...
Administrative institutions of the Holy See This article is about the Roman Curia of the Holy See. For a governing body of a particular church, see Curia (Roman Catholic Church). For the building that housed the Roman Senate, see Curia Julia. For other Roman curiae, see Curia. Part of a series on theRoman Curia Secretariat of State Section for Relations with States Dicasteries Evangelization Doctrine of the Faith Pontifical Commission for the Protection of Minors International Theological Com...
Questa voce o sezione sull'argomento attori statunitensi non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Questa voce sull'argomento attori statunitensi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Hannah Elizabet...
Tournoi de tennis de Miami (ATP 2016) Édition Miami Open presented by Itaú Date Du 23 mars au 3 avril 2016 Lieu Tennis Center at Crandon Park Miami 25° 42′ 29″ N, 80° 09′ 32″ O Catégorie ATP Masters 1000 Surface Dur (ext.)Laykold Dotation 6 134 605 $ Total Financial Commitment 7 037 595 $ Simple 7 tours (96 joueurs) Novak Djokovic Double 5 tours (32 équipes) Pierre-Hugues Herbert Nicolas Mahut Tournoi de tennis de Miam...
Generalized object in category theory Not to be confused with Product category. In category theory, the product of two (or more) objects in a category is a notion designed to capture the essence behind constructions in other areas of mathematics such as the Cartesian product of sets, the direct product of groups or rings, and the product of topological spaces. Essentially, the product of a family of objects is the most general object which admits a morphism to each of the given objects. Defin...