În matematică, o funcție se numește morfism de grupuri în următoarele condiții: admit fiecare o structură de grup, cu operațiile notate și respectiv , iar
Proprietăți
- Dacă e și e' sunt elementele neutre ale lui G si G' atunci f(e)=e'.
- x G, .
- θ : G → G', θ(x)=e', x G este evident morfism de grupuri numit morfismul nul.
- Compunerea de morfisme de grupuri este tot un morfism de grupuri.
- 1G : G → G, 1G(x) = x, x G este evident morfism de grupuri numit morfismul identic al grupului G. În plus, dacă f : G → G' este morfism de grupuri atunci au loc: f ∘ 1G = f și 1G' ∘ f = f.
- f este izomorfism de grupuri dacă și numai dacă f este bijectivă.
Izomorfism între grupul multiplicativ al rădăcinilor de ordin cinci ale unității și grupul rotațiilor pentagonului echilateral
Vezi și
Izomorfism