Involuție (matematică)

O involuție este o funcție care, aplicată de două ori, se întoarce la punctul de pornire

În matematică, o involuție, sau o funcție involutivă, este o funcție f care este inversa ei înseși

f(f(x)) = x

pentru orice x din domeniul de definiție al f.[1] Echivalent, rezultatul obținut prin aplicarea funcției f de două ori este valoarea inițială.

Proprietăți generale

Orice involuție este bijectivă.

Funcția identitate () este exemplul banal de involuție. Exemple simple de involuții sunt înmulțirea cu −1 în aritmetică, elementul invers, conjugatul complex, anumite permutări[2] și complementul din teoria mulțimilor. Alte exemple sunt rotația cu o jumătate de tură, transpoziția de tip ROT13, matrice transpusă, cifrarea simetrică, cifrul Beaufort sau cifrul polialfabetic.

Numărul involuțiilor, inclusiv involuția identică, pe o mulțime cu elementele n = 0, 1, 2, ... este dat de o relație de recurență găsită de Heinrich August Rothe în 1800:

și pentru

Primii câțiva termeni ai acestui șir sunt 1, 1, 2, 4, 10, 26, 76, 232 (șirul OEIS A000085[3]); aceste numere se numesc numere de telefon⁠(d) și indică și numărul de tablouri Young[2] cu un număr de celule dat.[4] Compunerea gf a două involuții f și g este o involuție dacă și numai dacă operația este comutativă: gf = fg.[5]

Orice involuție pe un număr impar de elemente are cel puțin un punct fix. Mai general, pentru o involuție pe o mulțime finită de elemente, numărul de elemente și numărul de puncte fixe au aceeași paritate.[6]

Note

  1. ^ en Russell, Bertrand (), Principles of mathematics (ed. 2nd), W. W. Norton & Company, Inc, p. 426, ISBN 9781440054167 
  2. ^ a b Knuth, Donald E. (), Tratat de programarea calculatoarelor, vol 3: Sortare și căutare, Ed. Tehnică, p. 47 .
  3. ^ Șirul A000085 la Enciclopedia electronică a șirurilor de numere întregi (OEIS)
  4. ^ en Knuth, Donald E. (), The Art of Computer Programming, Volume 3: Sorting and Searching, Reading, Mass.: Addison-Wesley, pp. 48, 65, MR 0445948 .
  5. ^ en Kubrusly, Carlos S. (), The Elements of Operator Theory, Springer Science & Business Media, Problem 1.11(a), p. 27, ISBN 9780817649982 .
  6. ^ en Zagier, D. (), „A one-sentence proof that every prime p≡ 1 (mod 4) is a sum of two squares”, American Mathematical Monthly, 97 (2): 144, doi:10.2307/2323918, JSTOR 2323918, MR 1041893 .

Lectură suplimentară

Read other articles:

Artikel ini bukan mengenai One Day (film 2017). A DayPoster rilis teatrikalNama lainHangul하루 Alih Aksara yang DisempurnakanHaru SutradaraCho Sun-hoProduserSong Ji-eunLee Sang-hakDitulis olehCho Sun-hoLee Sang-hakPemeranKim Myung-minByun Yo-hanPenata musikMowgSinematograferKim Ji-yongPenyuntingShin Min-KyungPerusahaanproduksiFilm LineDistributorCGV ArthouseTanggal rilis 15 Juni 2017 (2017-06-15) Durasi90 menitNegaraKorea SelatanBahasaKoreaPendapatankotorUS$8,5 juta[1&#...

 

Sam MendesLahirSamuel Alexander Mendes1 Agustus 1965 (umur 58)Reading, Berkshire, Britania RayaPekerjaanSutradaraTahun aktif1993-sekarangSuami/istriKate Winslet (2003-2010) Samuel Alexander Mendes (lahir 1 Agustus 1965) merupakan seorang sutradara berkebangsaan Inggris yang meraih penghargaan Academy Award saat mensutradarai film American Beauty. Dia dilahirkan di Reading, Inggris. Dia mulai berkarier di dunia film sejak tahun 1993. Sam Mendes juga dikenal sebagai sutradara pembesu...

 

Khatulistiwa Barat غرب الاستوائيةGharb al-Istiwa'iyahNegara bagian BenderaLokasi di Sudan Selatan.Negara Sudan SelatanRegionKhatulistiwa (wilayah)Jumlah konti10Ibu kotaYambioLuas • Total79.319 km2 (30,625 sq mi)Populasi (2008) • Total619.029Zona waktuUTC+3 (EAT) Khatulistiwa Barat (bahasa Arab: غرب الاستوائية; Gharbul Istiwa'iyah) adalah sebuah negara bagian di Sudan Selatan dengan luas wilayah 79.319 km² dan pop...

Manufacturer of magnetic tape Quantegy Inc. was a manufacturer of magnetic tape and professional external hard drives based in Opelika, Alabama. Their tape products were primarily used in analog audio and video recording studios, but they also have some use with digital data storage devices and instrumentation recorders along with some audiophile home hobbyists. The company was created at the end of World War II by Major John Herbert Orr as Orradio Industries. This was a result of the US Army...

 

2014 European Parliament election in Finland ← 2009 25 May 2014 2019 → All 13 Finnish seats in the European ParliamentTurnout39.14%   First party Second party Third party   Party National Coalition Centre Finns Alliance EPP ALDE MELD Last election 23.21%, 3 seats 19.03%, 3 seats 9.79%, 1 seat Seats won 3 3 2 Seat change 1 Popular vote 390,376 339,895 222,457 Percentage 22.59% 19.67% 12.87% Swing 0.62pp 0.64pp 3.08pp   Fourth party Fift...

 

Ini adalah nama Maluku, Ambon, marganya adalah Pieters Herman Pieters Panglima Komando Daerah Militer XV/Pattimura ke-1 Informasi pribadiLahir(1924-12-17)17 Desember 1924Ambon, MalukuMeninggal12 Desember 1996(1996-12-12) (umur 71)JakartaSuami/istriMartha Esterlina Salomina Pieters - SouisaPekerjaanPrajurit Militer TNI ADKarier militerPihak IndonesiaDinas/cabang TNI Angkatan DaratPangkat KolonelSatuanInfanteriSunting kotak info • L • B Kolonel Inf (Purn.) Herman Pie...

Panamanian footballer (born 1981) In this Spanish name, the first or paternal surname is Penedo and the second or maternal family name is Cano. Jaime Penedo Penedo with Panama at the 2018 FIFA World CupPersonal informationFull name Jaime Manuel Penedo CanoDate of birth (1981-09-26) 26 September 1981 (age 42)Place of birth Panama City, PanamaHeight 1.86 m (6 ft 1 in)Position(s) GoalkeeperYouth career1991–1999 Estudiantes de PanamaSenior career*Years Team Apps (Gls...

 

Australian dancer and choreographer This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Wade Robson – news · newspapers · books · scholar · JSTOR (March 2021) (Learn how and when to remove this mess...

 

Railway station in New South Wales, Australia For the train, see Sydney Trains A & B sets. WaratahStation looking west in November 2022General informationLocationStation Street, WaratahAustraliaCoordinates32°54′09″S 151°43′53″E / 32.902578°S 151.731523°E / -32.902578; 151.731523Owned byTransport Asset Holding EntityOperated byNSW TrainLinkLine(s)Main NorthernDistance165.96 kilometres from CentralPlatforms2 sideTracks4ConnectionsBusConstructionStructure ...

1955 single by Gilbert Bécaud and Everly Brothers This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Let It Be Me The Everly Brothers song – news · newspapers · books · scholar · JSTOR (July 2016) (Learn how and when to remove this message) Je t'appartiensSingle by Gilbert BécaudReleased1955GenrePopSongw...

 

Highway in Illinois Future Interstate 490I-490 highlighted in redRoute informationAuxiliary route of I-90Maintained by ISTHAStatusUnder constructionMajor junctionsSouth end I-294 Toll in Franklin ParkMajor intersections IL 19 in Bensenville IL 390 Toll in Bensenville IL 72 in Elk Grove Village North end I-90 Toll in Des Plaines LocationCountryUnited StatesStateIllinoisCountiesCook, DuPage Highway system Interstate Highway System Main Auxiliary Suffixed Business Future...

 

Gregory House, diperankan oleh Hugh Laurie. Gregory House (lengkapnya Dr. Gregory House, M.D.) adalah tokoh fiksi utama dalam film seri House yang diperankan oleh Hugh Laurie. Ia adalah seorang dokter dalam bidang penyakit menular dan ahli ginjal. Ia dianggap sebagai seorang jenius yang sering melontarkan komentar sinis. House memimpin sekelompok dokter muda di Rumah Sakit Princeton-Plainsboro. House sering menelan vicodin untuk mengatasi nyeri di kakinya. Ia mengakui bahwa ia ketagihan obat ...

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (ديسمبر 2018) مقاطعة كرولي     الإحداثيات 38°20′N 103°47′W / 38.33°N 103.79°W / 38.33; -103.7...

 

Part of a series on theBiodiversity of Scotland BiodiversityFloraFaunaBirdsScottish breedsHighland fauna ConservationSpecial Areas of Conservation OrganisationsWildlife Trusts Scottish Wildlife Trust Areas Local nature reserves National nature reserves Protected areas National parks National Scenic Areas Natural historyNatural history vte This is a list of domestic animal breeds originating in Scotland. To be considered domesticated, a population of animals must have their behaviour, life cy...

 

1943 unique light aircraft carrier of the Royal Navy For other ships with the same name, see HMS Unicorn. Unicorn at a Japanese port (probably Sasebo) History United Kingdom NameUnicorn NamesakeUnicorn Ordered14 April 1939 BuilderHarland and Wolff, Belfast, Northern Ireland Cost£2,531,000 Yard number1031[1] Laid down26 June 1939 Launched20 November 1941 Completed12 March 1943[1] DecommissionedJanuary 1946 RecommissionedMid-1949 Decommissioned17 November 1953 IdentificationPen...

The location of Cyprus (dark and medium green) in relation to Europe and Asia Part of a series onJews and Judaism Etymology Who is a Jew? Religion God in Judaism (names) Principles of faith Mitzvot (613) Halakha Shabbat Holidays Prayer Tzedakah Land of Israel Brit Bar and bat mitzvah Marriage Bereavement Baal teshuva Philosophy Ethics Kabbalah Customs Rites Synagogue Rabbi Texts Tanakh Torah Nevi'im Ketuvim Talmud Mishnah Gemara Rabbinic Midrash Tosefta Targum Beit Yosef ...

 

ROTOR air defence control bunker converted to a Regional Seat of Government Not to be confused with Hack Green Secret Nuclear Bunker. The bungalow that serves as the entrance to the Kelvedon Hatch Nuclear Bunker The Kelvedon Hatch Secret Nuclear Bunker at Kelvedon Hatch, in the Borough of Brentwood in the English county of Essex, is a large underground bunker maintained during the Cold War as a potential regional government headquarters. Since being decommissioned in 1992, the bunker has been...

 

This template was considered for deletion on 2017 June 15. The result of the discussion was no consensus. California Template‑class California portalThis template is within the scope of WikiProject California, a collaborative effort to improve the coverage of the U.S. state of California on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.CaliforniaWikipedia:WikiProject CaliforniaTemplate:WikiProject C...

حملة تونكين   معلومات شخصية تعديل مصدري - تعديل   حملة تونكين، نزاع مسلح حدث بين يونيو 1883 وأبريل 1886 بين الفرنسيين على كل من الفيتناميين، وجيش العلم الأسود بقيادة ليو يونغفو، وجيشي قوانغشي ويونان الصينيين لاحتلال تونكين (شمال فيتنام) وتحصين محمية فرنسية هناك. بدأت الحم�...

 

2000 EP by Katy GarbiTi Theloune Ta Matia SouΤι Θέλουνε Τα Μάτια ΣουEP by Katy GarbiReleased15 December 2000GenrePop, Rock, Modern laikaLength21:05LanguageGreekLabelSony Music GreeceColumbiaProducerGiannis DoulamisKaty Garbi chronology To Kati(2000) Ti Theloune Ta Matia SouΤι Θέλουνε Τα Μάτια Σου(2000) Apla Ta Pragmata(2001) Singles from Ti Theloune Ta Matia Sou Ti Theloune Ta Matia Sou [Club Mix]Released: 15 December 2000 Aspro I MavroReleased: ...