Sergio Alejandro Hernández
|
Read other articles:
1983 single by Echo & the BunnymenThe CutterCover from the 7 releaseSingle by Echo & the Bunnymenfrom the album Porcupine B-sideWay Out and Up We Go / Zimbo (live)Released14 January 1983RecordedSeptember 1982Genre Rock[1] post-punk Length3:53LabelKorovaSongwriter(s)Ian McCulloch, Will Sergeant, Les Pattinson, Pete de FreitasProducer(s)KingbirdEcho & the Bunnymen singles chronology The Back of Love (1982) The Cutter (1983) Never Stop (1983) Alternative coverCover from the ...
Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...
Daerah otonom adalah sebuah daerah di dalam suatu negara yang memiliki kekuasaan otonom, atau kebebasan dari pemerintah di luar daerah tersebut. Biasanya suatu daerah diberi sistem ini karena keadaan geografinya yang unik atau penduduknya merupakan minoritas negara tersebut, sehingga diperlukan hukum-hukum yang khusus, yang hanya cocok diterapkan untuk daerah tersebut.[1] Negara-negara dengan setidaknya satu kawasan yang dilabeli otonom atau didefinisikan demikian menurut hukum Di Ind...
I rusteghiCommedia in tre atti AutoreCarlo Goldoni Lingua originaleVeneziano Prima assoluta1760Teatro San Luca, in occasione del Carnevale di Venezia Personaggi Canciano, cittadino di Venezia Felicia, moglie di Canciano il conte Riccardo Lunardo, mercante Margarita, moglie di Lunardo in seconde nozze Lucietta, figlia di Lunardo di primo letto Simon, mercante Marina, moglie di Simon Maurizio, cognato di Marina Felippetto, figliuolo di Maurizio Manuale I rusteghi è una commedia di Carlo...
This template was considered for deletion on 28 May 2022. The result of the discussion was no consensus. Military history: North America / United States / American Civil War Template‑classThis template is within the scope of the Military history WikiProject. If you would like to participate, please visit the project page, where you can join the project and see a list of open tasks. To use this banner, please see the full instructions.Military historyWikipedia:WikiProject Military historyTem...
Шалфей обыкновенный Научная классификация Домен:ЭукариотыЦарство:РастенияКлада:Цветковые растенияКлада:ЭвдикотыКлада:СуперастеридыКлада:АстеридыКлада:ЛамиидыПорядок:ЯсноткоцветныеСемейство:ЯснотковыеРод:ШалфейВид:Шалфей обыкновенный Международное научное наз...
Russian football club Football clubFC Baltika-BFU KaliningradFull nameFootball Club Baltika-BFU KaliningradFounded2021GroundBaltika StadiumChairmanRavil IzmaylovManagerAnver KoneyevLeagueRussian Second League,Division B,Group 220238thWebsiteClub website FC Baltika-BFU Kaliningrad (Russian: ФК «Балтика-БФУ» (Калининград)) is a Russian football team based in Kaliningrad. It was founded in 2021 as the farm-club by FC Baltika Kaliningrad, together with the Immanuel Kant B...
В Википедии есть статьи о других людях с такой фамилией, см. Насыров. Мурат Насыровказ. Мұрат Насыров Основная информация Полное имя Мурат Исмаилович Насыров Дата рождения 13 декабря 1969(1969-12-13) Место рождения Алма-Ата, Казахская ССР, СССР Дата смерти 19 января 2007(200...
Sailing at the Olympics Sailingat the Games of the XI OlympiadPlaque:Olympische Segel Wettbewerbe 1936(Olympic Sailing Competition 1936)VenuesFirth of KielDatesFirst race: 4 August 1936 (1936-08-04)Last race: 12 August 1936 (1936-08-12)Competitors166 Male and 3 Female from 26 nationsBoats59← 19321948 → Sailing/Yachting is an Olympic sport starting from the Games of the 1st Olympiad (1896 Olympics in Athens, Greece). With the except...
The examples and perspective in this article may not represent a worldwide view of the subject. You may improve this article, discuss the issue on the talk page, or create a new article, as appropriate. (July 2012) (Learn how and when to remove this message) A bearer instrument is a document that entitles the holder of the document to rights of ownership or title to the underlying property. In the case of shares (bearer shares) or bonds (bearer bonds), they are called bearer certificates.[...
此條目可参照英語維基百科相應條目来扩充。 (2021年5月6日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 约翰斯顿环礁Kalama Atoll 美國本土外小島嶼 Johnston Atoll 旗幟颂歌:《星條旗》The Star-Spangled Banner約翰斯頓環礁�...
莎拉·阿什頓-西里洛2023年8月,阿什頓-西里洛穿著軍服出生 (1977-07-09) 1977年7月9日(46歲) 美國佛羅里達州国籍 美國别名莎拉·阿什頓(Sarah Ashton)莎拉·西里洛(Sarah Cirillo)金髮女郎(Blonde)职业記者、活動家、政治活動家和候選人、軍醫活跃时期2020年—雇主內華達州共和黨候選人(2020年)《Political.tips》(2020年—)《LGBTQ國度》(2022年3月—2022年10月)烏克蘭媒�...
Folding lectern This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Rehal book rest – news · newspapers · books · scholar · JSTOR (February 2020) (Learn how and when to remove this message) A wooden rehal. A rehal[a] (Urdu: رحل, Hindi: रिहल, Bengali: রেহাল, Arabic: رَحْل)...
Measure of cloudiness of sea water This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Ocean turbidity – news · newspapers · books · scholar · JSTOR (September 2013) (Learn how and when to remove this message) Visualisation of the ocean turbidity of the ocean just before Hurricane Bob (August 14, 1991) Ocean tur...
A 2022 battle of the Russo-Ukrainian War For other battles in Kharkiv, see Battle of Kharkiv. Battle of Kharkiv (2022)Part of the eastern Ukraine campaign of the Russian invasion of UkraineA street in downtown Kharkiv after being shelledDate24 February – 13 May 2022(2 months, 2 weeks and 5 days)[1]LocationKharkiv, UkraineResult Ukrainian victory[2]Belligerents Russia UkraineUnits involved Russian Ground Forces 1st Guards Tank Army[3] ...
French painter Charles Laval, Self Portrait, 1888, oil on canvas, 50 × 60 cm Van Gogh Museum Amsterdam Charles Laval (17 March 1862 – 27 April 1894) was a French painter associated with the Synthetic movement and Pont-Aven School. Laval was born in Paris, and was a contemporary and friend of Paul Gauguin and Vincent van Gogh. Gauguin created a portrait of him in 1886 looking at one of Gauguin's ceramic sculptures, entitled Still Life with Profile of Laval.[1] Charles Laval and ...
يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) أبرشية مقدونيا تقسيم إداري البلد روما القديمة التقسيم الأعلى ولاية إليريكم الامبراطورية ا...
1932 book by Jacques Maritain The Degrees of Knowledge AuthorJacques MaritainLanguageFrenchSubjectEpistemologyPublished 1932 (in French) 1937 (in English, by Geoffrey Bles (London)) Publication placeFranceMedia typePrint (Hardcover and Paperback)ISBN978-0268008864 The Degrees of Knowledge is a 1932 book by the French philosopher Jacques Maritain,[1] in which the author adopts St. Thomas Aquinas’s view called critical realism and applies it to his own epistemological positions.&...
USS LST-594 beached at Hollandia, New Guinea in 1944. History United States NameUSS LST-594 Ordered2 August 1943 BuilderMissouri Valley Bridge & Iron Co., Evansville, Indiana Laid down1 July 1944 Launched12 August 1944 Commissioned6 September 1944 Decommissioned21 February 1946 Stricken5 March 1947 Fate4 June 1947, Sold to the government of South Korea, fate unknown. General characteristics [1] Class and typeLST-542-class tank landing ship Displacement 1,625 t (1,599 LT...
A B C D E {\displaystyle ABCDE} adalah segilima. Dengan dilasi k {\displaystyle k} , maka diperoleh A ′ B ′ C ′ D ′ E ′ {\displaystyle A'B'C'D'E'} , dimana ukurannya lebih besar dari A B C D E {\displaystyle ABCDE} . Dalam geometri, khususnya transformasi geometri, dilatasi adalah suatu objek dua dimensi yang memperbesar atau memperkecil ukuran tanpa harus mengubah bentuk objek. Setiap objek sebelum dan sesudah dilatasi akan serupa dengan satu sama lain. Mi...