De aproximadamente meio milhão de tabelas de argilas babilônicas escavadas desde o início do século XIX, milhares são de natureza matemática. Provavelmente o mais famoso destes exemplos de matemática babilônica seja a tabela Plimpton 322, referindo-se ao fato de ter o número 322 na coleção G.A. Plimpton da Columbia University. Esta tabela, que acredita-se ter sido escrita no século XVIII a.C., possui uma tabela de 4 colunas e 15 linhas de números em escrita cuneiforme do período. Pesquisadores de Sydney, em 2017, concluiram que as quatro colunas e as 15 fileiras de cuneiformes representam a tabela de trabalho trigonométrico mais antiga e mais precisa do mundo, uma ferramenta de trabalho que poderia ter sido usada na topografia e no cálculo de templos, palácios e pirâmides[1].
Embora a tabela tenha sido formalmente interpretada pelos principais matemáticos como uma lista de ternas pitagóricas, ainda existe uma perspectiva publicada pela Mathematical Association of America que diz que esta interpretação não é aceitável.[2] Para tratamentos mais acessíveis desta tableta sugerem Robson (2002) ou, mais brevemente, Conway e Guy (1996). Robson (2001) discute de forma mais detalhada e técnica sobre a interpretação dos números desta tableta, com uma extensiva bibliografia.
Origem
Plimpton 322 é uma tabela de argila parcialmente quebrada medindo cerca de 13 centímetros de largura, 9 centímetros de altura, e 2 centímetros de espessura.
O editor de nova-iorquino George A. Plimpton comprou a tableta a partir de um vendedor de arqueologia, Edgar J. Banks, provavelmente em 1922, e a doou com o resto de sua coleção para Columbia University, no meio da década de 1930. De acordo com os Banks, as tabletas vieram de Senkereh, um local ao sul do Iraque correspondente à antiga cidade de Larsa.[3]
Acredita-se que tenha sido escrita por volta de 1800 a.C., baseado em parte no estilo de utilizado na escrita cuneiforme: Robson (2002) afirma que esta forma de escrita "é típica de documentos do sul do Iraque de 4000–3500 anos atrás".[4] Mais especificamente baseando-se em similaridades de formato com outras tabletas de Larsa que possuem datas explícitas, Plimpton 322 pode ser datada entre o período de 1822–1784 a.C.[5]
Os números
O conteúdo principal do Plimpton 322 é uma tabela de números, com quatro colunas e quinze linhas, em notação sexagesimal babilônica. A quarta coluna é apenas uma linha de números em ordem de 1 a 15. A segunda e terceira colunas são totalmente visíveis na tableta. No entanto, a ponta da primeira coluna foi quebrada, e há duas consistente extrapolações para o que poderia ser a falta dígitos; estas interpretações diferem apenas em saber se cada série começa ou não com um dígito adicional igual a 1. Com as diferentes extrapolações mostradas entre parênteses, esses números são os seguintes:
(1:)59:00:15
1:59
2:49
1
(1:)56:56:58:14:50:06:15
56:07
1:20:25
2
(1:)55:07:41:15:33:45
1:16:41
1:50:49
3
(1:)53:10:29:32:52:16
3:31:49
5:09:01
4
(1:)48:54:01:40
1:05
1:37
5
(1:)47:06:41:40
5:19
8:01
6
(1:)43:11:56:28:26:40
38:11
59:01
7
(1:)41:33:45:14:03:45
13:19
20:49
8
(1:)38:33:36:36
8:01
12:49
9
(1:)35:10:02:28:27:24:26
1:22:41
2:16:01
10
(1:)33:45
45
1:15
11
(1:)29:21:54:02:15
27:59
48:49
12
(1:)27:00:03:45
2:41
4:49
13
(1:)25:48:51:35:06:40
29:31
53:49
14
(1:)23:13:46:40
56
1:46
15
É possível que colunas adicionais estivessem presentes na parte quebrada da tableta, à esquerda destas colunas. A conversão desses números de notação sexagesimal para decimal apresenta ambiguidades adicionais, pois a notação sexagesimal babilônica não especificava o valor posicional do primeiro dígito de cada número.
Interpretação
Em cada linha, o número na segunda coluna pode ser interpretado como o lado mais curto s de um triângulo retângulo, e o número na terceira coluna pode ser interpretado como a hipotenusad do triângulo. O número na primeira coluna ou é a fração ou , onde l denota o lado mais comprido do mesmo triângulo. Os acadêmicos ainda diferem, entretanto, em como estes números foram gerados.
Bruins, Evert M. (1949). «On Plimpton 322, Pythagorean numbers in Babylonian mathematics». Koninklijke Nederlandse Akademie van Wetenschappen Proceedings. 52: 629–632
Bruins, Evert M. (1951). «Pythagorean triads in Babylonian mathematics: The errors on Plimpton 322». Sumer. 11: 117–121
Neugebauer, O. (1951). The Exact Sciences in Antiquity 2nd ed. Copenhagen: Munksgaard. Available as a Dover reprint, ISBN 978-0486223322
Robson, Eleanor (2001). «Neither Sherlock Holmes nor Babylon: a reassessment of Plimpton 322». Historia Math. 28 (3): 167–206. doi:10.1006/hmat.2001.2317. MR1849797