Micipsa
|
Read other articles:
Peta Komoro. Berikut merupakan daftar pulau di Komoro, tiga di antaranya merupakan pulau otonom: Pulau otonom Anjouan (Nzwani/Ndzuwani) Mwali (Mohéli) Ngazidja (Pulau Komoro Besar/Grande Comore) Mayotte (Mahoré) Pulau biasa Ajangua Angaziga Aombe Bambo Bandeli Buni Buzi Cacazou Canzuni Chissioua Bouelachamba Chissioua Bouelamahombe Chissioua Bouelamanga Chissioua Bouelamiradji Chissioua Chandzi Chissioua Chikoundou Chissioua Dzaha Chissioua Foro Chissioua Gnandza Chissioua Magnougni Chissio...
Artikel bertopik Agama ini perlu dirapikan agar memenuhi standar WikipediaMerapikan artikel bisa berupa membagi artikel ke dalam paragraf atau wikifikasi artikel. Setelah dirapikan, tolong hapus pesan ini. Watchtower logo The Watchtower and Herald of Christ’s Kingdom, Menara Pengawal di awal abad ke-20 Bagian dari seriSaksi-Saksi Yehuwa Ikhtisar Struktur organisasi Badan Pimpinan Watch Tower Bibleand Tract Society Badan usaha Sejarah Gerakan Siswa Alkitab Sengketa kepemimpinan Kelompok-kelo...
العلاقات الأرجنتينية الوسط أفريقية الأرجنتين جمهورية أفريقيا الوسطى الأرجنتين جمهورية أفريقيا الوسطى تعديل مصدري - تعديل العلاقات الأرجنتينية الوسط أفريقية هي العلاقات الثنائية التي تجمع بين الأرجنتين وجمهورية أفريقيا الوسطى.[1][2][3][4]...
Pour les articles homonymes, voir Sculpture (homonymie). Sculpture en ronde-bosse : David de Michel-Ange. La sculpture est une activité artistique qui consiste à concevoir et réaliser des formes en volume, en relief, soit en ronde-bosse (statuaire), en haut-relief, en bas-relief, par modelage, par taille directe, par soudure ou assemblage. Le terme de sculpture désigne également l'objet résultant de cette activité. Le mot sculpture vient étymologiquement du latin « sculper...
Disambiguazione – Sordi rimanda qui. Se stai cercando altri significati, vedi Sordi (disambigua). Alberto Sordi nel 1981 Alberto Sordi (Roma, 15 giugno 1920 – Roma, 24 febbraio 2003[1]) è stato un attore, regista, comico, sceneggiatore, compositore, cantante e doppiatore italiano. Fra i più importanti attori del cinema italiano, ha recitato in 160 film ed è considerato uno dei più grandi interpreti della commedia all'italiana con Nino Manfredi, Vittorio Gassman e Ugo ...
Halaman ini berisi artikel tentang Traktat Frankfurt 1871. Untuk traktat lainnya, lihat Traktat Frankfurt (disambiguasi). Traktat Versailles pada 1871 mengakhiri Perang Prancis-Prusia dan ditandatangani oleh Adolphe Thiers, dari Republik Prancis Ketiga, dan Otto von Bismarck, dari Kekaisaran Jerman pada 26 Februari 1871.[1] Traktat tersebut kemudian diratifikasikan oleh Traktat Frankfurt pada 10 Mei pada tahun yang sama. Adolphe Thiers kemudian dijadikan sebagai pemimpin Prancis yang ...
Spanish cyclist Not to be confused with Aitor González (cyclist, born 1990). In this Spanish name, the first or paternal surname is González and the second or maternal family name is Jiménez. Aitor GonzálezPersonal informationFull nameAitor González JiménezNicknameTerminaitorBorn (1975-02-27) 27 February 1975 (age 49)Zumárraga, SpainTeam informationCurrent teamRetiredDisciplineRoadRoleRiderRider typeClimberProfessional teams1998Avianca–Telecom1999–2002Ke...
American presidential exec order Executive Order 13776Establishing the Task Force on Crime Reduction and Public SafetyTypeExecutive orderExecutive Order number13776Signed byDonald Trump on February 9, 2017 (2017-02-09)Federal Register detailsFederal Register document number2017-03118Publication dateFebruary 14, 2017 (2017-02-14)Document citation82-10699SummaryEstablishes the Task Force on Crime Reduction and Public Safety to support ...
Indian author and activist (born 1961) Not to be confused with Anuradha Roy (novelist). Arundhati RoyRoy in 2013BornSuzanna Arundhati Roy (1961-11-24) 24 November 1961 (age 62)[1]Shillong, Assam (present-day Meghalaya), IndiaOccupationWriter, essayist, activistEducationLawrence School, LovedaleAlma materSchool of Planning and Architecture, New DelhiPeriod1997–presentGenreFiction, non-fictionNotable worksThe God of Small ThingsNotable awards National Film Award for Best Scr...
Archaeological site and history museum in Shaanxi, ChinaDaming Palace National Heritage Park大明宫国家遗址公园The reconstructed Danfeng Gate, housing and conserving the on-site ruins of the original gate of the Daming Palace [1]Established1 October 2010LocationXi'an, Shaanxi, ChinaCoordinates34°17′45″N 108°57′30″E / 34.29583°N 108.95833°E / 34.29583; 108.95833TypeArchaeological site and history museumDaming PalaceSimplified Chinese大明�...
Amendments to U.S. legislation President George W. Bush signs amendments to the Act in July 2006 The U.S. Congress enacted major amendments to the Voting Rights Act of 1965 in 1970, 1975, 1982, 1992, and 2006. Each of these amendments coincided with an impending expiration of some of the Act's special provisions, which originally were set to expire by 1970. However, in recognition of the voting discrimination that continued despite the Act, Congress repeatedly amended the Act to reauthorize t...
1927 Liechtenstein referendumsBuilding industry liberalisation initiative For 45.1% Against 54.9% Landtag counterproposal to the building industry liberalisation initiative For 5.4% Against 94.6% Amending the law on salaries and compensation For 35.21% Against 64.79% Politics of Liechtenstein Constitution 1921 Constitution Monarchy Prince (list) Hans-Adam II Hereditary Prince and Regent Alois Princely family Succession Executive Prime Minister ...
Japanese footballer Hijiri Kato Kato playing for Japan U-19 in 2019Personal informationDate of birth (2001-09-16) 16 September 2001 (age 22)Place of birth Hyogo, JapanHeight 1.71 m (5 ft 7 in)Position(s) DefenderTeam informationCurrent team Yokohama F. MarinosNumber 24Youth career Vissel Kobe Kanokodai FC0000–2019 JFA Academy FukushimaSenior career*Years Team Apps (Gls)2020–2023 V-Varen Nagasaki 61 (3)2023– Yokohama F. Marinos 0 (0)International career‡2019 Japan U...
هيكب عظمي للفيل هيكل عظمي لأحد الدصيورات قياس التنامي أو قياس التباين[1] (باللاتينية: Allometria) هو دراسة العلاقة بين حجم وشكل الجسم،[2] التشريح، الفيزيولوجيا وأخيرا السلوك،.[3] وقياس التنامي هو دراسة معروفة، ولا سيما في مجال التحليل الإحصائي للشكل تطوراتها النظرية،...
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. Nagatomo adalah nama Jepang. Tokoh-tokoh dengan nama Jepang ini antara lain: Pemain sepak bola Jepang Koichiro Nagatomo Yuto Nagatomo Halaman-halaman lainnya Semua halaman dengan Nagatomo Semua halaman dengan judul yang mengandung Nagatomo Halama...
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يوليو 2020) مجموعة السبع + مجموعة الدول الهشةالإطارالنوع جمعية تطوعية البلد تيمور الشرقية التنظيمموقع الويب g7plus.org تعديل - تعديل مصدري - تعديل ويكي بيانات وداعاً للصر...
48th edition of the Copa América This article documents a current Copa América. Information may change rapidly as the event progresses. Initial news reports, scores, or statistics may be unreliable. The last updates to this article may not reflect the most current information. Please feel free to improve this article (but note that updates without valid and reliable references will be removed) or discuss changes on the talk page. (June 2024) (Learn how and when to remove this message) 2024 ...
此條目過於依赖第一手来源。 (2023年11月20日)请補充第二手及第三手來源,以改善这篇条目。 國立馬公高級中學地址880 澎湖縣馬公市中華路369號邮政编码880其它名称National Magong High School类型國立綜合型高級中等學校隶属中華民國教育部创办日期1943年学区澎湖縣馬公市教育部學校代碼160302校長石仲哲校园面积市區学校网址http://www.mksh.phc.edu.tw/ 國立馬公高級中學,簡稱馬公高�...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: History of the Jews in Slovenia – news · newspapers · books · scholar · JSTOR (May 2023) (Learn how and when to remove this message) The location of Slovenia (dark green) in Europe Part of a series onJews and Judaism Etymology Who is a Jew? Religion God in Jud...
Linear mapping permuting rectangles of the same area a = 3/2 squeeze mapping In linear algebra, a squeeze mapping, also called a squeeze transformation, is a type of linear map that preserves Euclidean area of regions in the Cartesian plane, but is not a rotation or shear mapping. For a fixed positive real number a, the mapping ( x , y ) ↦ ( a x , y / a ) {\displaystyle (x,y)\mapsto (ax,y/a)} is the squeeze mapping with parameter a. Since { ( u , v ) : u v = c o n s t a n t } {\display...