A aplicação moderna da estocástica à mecânica quântica envolve a suposição de estocasticidade doespaço-tempo, a ideia de que a estrutura de pequena escala do espaço-tempo está passando por flutuações métricas e topológicas ("espuma quântica" de John Archibald Wheeler) e que o resultado médio de essas flutuações recria uma métrica de aparência mais convencional em escalas maiores que pode ser descrita usando a física clássica, juntamente com um elemento de não-localidade (ação à distância) que pode ser descrito usando a mecânica quântica. Uma interpretação estocástica da mecânica quântica é devida à flutuação de vácuo persistente. A ideia principal é que as flutuações do vácuo ou do espaço-tempo são a razão da mecânica quântica e não o resultado dela, como geralmente é considerado.
Louis de Broglie[4] sentiu-se compelido a incorporar um processo estocástico subjacente à mecânica quântica para fazer as partículas mudarem de uma onda piloto para outra.[3] Talvez a teoria mais amplamente conhecida em que a mecânica quântica descreva um processo inerentemente estocástico tenha sido apresentada por Edward Nelson[5] e seja chamada de mecânica estocástica. Isso também foi desenvolvido por Davidson, Guerra, Ruggiero e outros.[3]
A mecânica quântica estocástica pode ser aplicada ao campo da eletrodinâmica e é chamada eletrodinâmica estocástica (SED).[6] A SED difere profundamente da eletrodinâmica quântica (QED), mas é, no entanto, capaz de explicar alguns efeitos eletrodinâmicos de vácuo dentro de uma estrutura totalmente clássica.[7] Na eletrodinâmica clássica, assume-se que não há campos na ausência de fontes, enquanto a SED assume que sempre existe um campo clássico em constante flutuação devido à energia do ponto zero. Enquanto o campo satisfizer as equações de Maxwell, não há inconsistência a priori com essa suposição.[8] Desde que Trevor W. Marshall[9] propôs originalmente a ideia, ela tem sido de considerável interesse para um pequeno mas ativo grupo de pesquisadores.[10]
Nelson, E. (1986). «Field Theory and the Future of Stochastic Mechanics». In: Albeverio; Casati; Merlini. Stochastic Processes in Classical and Quantum Systems. Springer-Verlag. Berlin: [s.n.] pp. 438–469. ISBN978-3-662-13589-1. OCLC864657129. doi:10.1007/3-540-17166-5