Os primeiros estudos sobre a energia de grafos se deram no inicio dos anos 30, tendo origem em pesquisas sobre química quântica [1]. Nestes trabalhos, grafos foram utilizados para representar moléculas de hidrocarbonetos, com o propósito de determinar os níveis energéticos de alguns elétrons. Estas informações eram obtidas através da soma dos módulos dos autovalores do grafo associado a molécula em questão. Contudo, a energia de um grafo foi definida pela primeira vez apenas em 1978 por Ivan Gutman[2].
Definição
Em teoria espectral de grafos, a energia de um grafo é um parâmetro definido como a soma dos valores absolutos dos autovalores da sua matriz de adjacência. Mais precisamente, sejam todos os autovalores da matriz de adjacência do grafo . Assim, sua energia é definida como:
Energia de uma matriz
Nikiforov[3] estendeu o conceito de energia de um grafo para matrizes reais. Considere a matriz real (não necessariamente quadrada), sua energia é definida como a soma dos seus valores singulares. Vamos recordar que um valor singular da matriz , é a raiz quadrada de um dos autovalores da matriz . Mais precisamente, sejam todos os valores de singulares de , assim a sua energia é definida por:
Nestas condições, vale destacar que a energia de um grafo , é igual a energia da sua matriz de adjacência.
Outras energias
Além da energia usual de um grafo , atualmente pesquisadores tem estudado energias associadas a outras matrizes relacionadas com um grafo.
Seja um grafo com vértices e arestas e é a matriz identidade . Assim definimos:
A energia Laplaciana[4], definida como , onde é matriz Laplaciana do grafo .
A energia Laplaciana sem sinal[5], definida como , onde é matriz Laplaciana sem sinal do grafo .
A energia de incidência[6], definida como , onde é matriz de incidência do grafo .
Referências
- ↑ E. Hückel. Quantentheoretische beitrage zum benzolproblem. Z. Phys. 70 (1931), 204-286.
- ↑ I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forschungszenturm Graz., 103(1978), 1-22.
- ↑ V. Nikiforov. The energy of graphs and matrices. J. Math. Anal. Appl. 326 (2007), 1472-1475.
- ↑ I. Gutman, B. Zhou, Laplacian energy of a graph, Lin. Algebra Appl. 414 (2006) 29–37.
- ↑ I. Gutman, M. Robbiano, E. Martins, D. Cardoso, L. Medina, and O. Rojo. Energy of line graphs. Linear Algebra and its Applications 433 (2010) 1312–1323
- ↑ M. Jooyandeh, D. Kiania and M. Mirzakhaha. Incidence energy of a graph. MATCH Commun. Math. Comput. Chem. 62 (2009),
561-572.
Ver também