O algoritmoComb sort (ou Combo sort ou ainda algoritmo do pente[1]) é um algoritmo de ordenação relativamente simples, e faz parte da família de algoritmos de ordenação por troca. Foi desenvolvido em 1980 por Wlodzimierz Dobosiewicz. Mais tarde, foi redescoberto e popularizado por Stephen Lacey e Richard Box em um artigo publicado na revista Byte em Abril de 1991. O Comb sort melhora o Bubble sort, e rivaliza com algoritmos como o Quicksort. A ideia básica é eliminar as tartarugas ou pequenos valores próximos do final da lista, já que em um bubble sort estes retardam a classificação tremendamente. (Coelhos, grandes valores em torno do início da lista, não representam um problema no bubble sort).
O Algoritmo repetidamente reordena diferentes pares de itens, separados por um salto, que é calculado a cada passagem. Método semelhante ao Bubble Sort, porém mais eficiente.
Na Bubble sort, quando quaisquer dois elementos são comparados, eles sempre têm um gap (distância um do outro) de 1. A ideia básica do Comb sort é que a diferença pode ser muito mais do que um. (O Shell sort também é baseado nesta ideia, mas é uma modificação do insertion sort em vez do bubble sort).
O gap (intervalo) começa como o comprimento da lista a ser ordenada dividida pelo fator de encolhimento (em geral 1,3; veja abaixo), e a lista é ordenada com este valor (arredondado para um inteiro se for necessário) para o gap. Então, a diferença é dividida pelo fator de encolhimento novamente, a lista é ordenada com este novo gap, e o processo se repete até que a diferença seja de 1. Neste ponto, o Comb sort continua usando um espaço de 1 até que a lista esteja totalmente ordenada. A fase final da classificação é, portanto, equivalente a um bubble sort, mas desta vez a maioria dos elementos "tartarugas" já foram tratados, assim o bubble sort será eficiente.
Fator de encolhimento
O fator de encolhimento tem um grande efeito sobre a eficiência do Comb sort. No artigo original, os autores sugeriram 1,3 depois de tentar algumas listas aleatórias e encontrando-se, geralmente as mais eficazes. Um valor muito pequeno retarda o algoritmo porque mais comparações devem ser feitas, ao passo que um valor muito grande não pode tratar um número suficiente de "tartarugas" para ser prático.
O texto descreve uma melhoria no comb sort usando o valor base como fator de encolhimento. Ele também contém uma implementação em pseudocódigo com uma tabela de gaps pré-definidos.
Variações
Combsort11
Com um fator de encolhimento de cerca de 1,3, só existem três caminhos possíveis para a lista de gaps terminar: (9, 6, 4, 3, 2, 1), (10, 7, 5, 3, 2, 1), ou (11, 8, 6, 4, 3, 2, 1). Experimentos mostram que melhorias significativas de velocidade podem ser feitas se o gap for definido como 11, sempre que, caso contrário, tornar-se 9 ou 10. Esta variação é chamada Combsort11.
Se uma das sequências que começam com nove ou 10, forem utilizadas, o passo final, com um intervalo de 1 tem menor probabilidade de ordenar os dados sendo necessário então outro passo com gap de 1. Os dados são ordenados quando não ocorrem mais trocas durante uma passagem com gap= 1.
Também é possível usar uma tabela pré-definida, para escolher quais gaps a utilizar em cada passo.
Combsort com diferentes finais
Como muitos outros algoritmos eficientes de ordenação (como o quick sort ou merge sort), o comb sort é mais eficaz em suas passagens anteriores do que durante o passo final, quando ele se assemelha a um bubble sort. O Comb sort pode ser mais eficaz se o método de classificação é mudado uma vez que os gaps cheguem a um número pequeno o suficiente. Por exemplo, uma vez que a diferença chegue a um tamanho de cerca de 10 ou menor, parando o comb sort e fazendo um simples gnome sort ou cocktail sort, ou, melhor ainda, um insertion sort, se aumentará a eficiência global da ordenação.
Outra vantagem deste método é que não há necessidade de manter o controle das operações de troca durante os passos da classificação para saber se a ordenação deve parar ou não.
Esta é uma implementação no estilo STL. Ele irá classificar qualquer intervalo entre a primeira e a última. Isso funciona com quaisquer iteradores posteriores, mas é mais eficaz com iteradores de acesso aleatório ou ponteiros.