Em matemática, para aproximar a derivada de uma função à uma ordem arbitrária de precisão, é possível usar diferenças finitas. A diferença finita pode ser central, para frente ou para trás.
Diferença Finita Central
Esta tabela contém os coeficientes das diferenças central, para a ordem várias de precisão:
Derivada
|
Precisão
|
−4
|
−3
|
−2
|
−1
|
0
|
1
|
2
|
3
|
4
|
1
|
2 |
|
|
|
−1/2 |
0 |
1/2 |
|
|
|
4 |
|
|
1/12 |
−2/3 |
0 |
2/3 |
−1/12 |
|
|
6 |
|
−1/60 |
3/20 |
−3/4 |
0 |
3/4 |
−3/20 |
1/60 |
|
8 |
1/280 |
−4/105 |
1/5 |
−4/5 |
0 |
4/5 |
−1/5 |
4/105 |
−1/280
|
2
|
2 |
|
|
|
1 |
−2 |
1 |
|
|
|
4 |
|
|
−1/12 |
4/3 |
−5/2 |
4/3 |
−1/12 |
|
|
6 |
|
1/90 |
−3/20 |
3/2 |
−49/18 |
3/2 |
−3/20 |
1/90 |
|
8 |
−1/560 |
8/315 |
−1/5 |
8/5 |
−205/72 |
8/5 |
−1/5 |
8/315 |
−1/560
|
3
|
2 |
|
|
−1/2 |
1 |
0 |
−1 |
1/2 |
|
|
4 |
|
1/8 |
−1 |
13/8 |
0 |
−13/8 |
1 |
−1/8 |
|
6 |
−7/240 |
3/10 |
−169/120 |
61/30 |
0 |
−61/30 |
169/120 |
−3/10 |
7/240
|
4
|
2 |
|
|
1 |
−4 |
6 |
−4 |
1 |
|
|
4 |
|
−1/6 |
2 |
−13/2 |
28/3 |
−13/2 |
2 |
−1/6 |
|
6 |
7/240 |
−2/5 |
169/60 |
−122/15 |
91/8 |
−122/15 |
169/60 |
−2/5 |
7/240
|
Por exemplo, a terceira derivada com uma precisão de segunda ordem é:
Diferenças Finitas para Frente e para Trás
Esta tabela contém os coeficientes das diferenças para a frente, para várias ordens de precisão:
Derivada
|
Precisão
|
0
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
1
|
1 |
−1 |
1 |
|
|
|
|
|
|
|
2 |
−3/2 |
2 |
−1/2 |
|
|
|
|
|
|
3 |
−11/6 |
3 |
−3/2 |
1/3 |
|
|
|
|
|
4 |
−25/12 |
4 |
−3 |
4/3 |
−1/4 |
|
|
|
|
5 |
−137/60 |
5 |
−5 |
10/3 |
−5/4 |
1/5 |
|
|
|
6 |
−49/20 |
6 |
−15/2 |
20/3 |
−15/4 |
6/5 |
−1/6 |
|
|
2
|
1 |
1 |
−2 |
1 |
|
|
|
|
|
|
2 |
2 |
−5 |
4 |
−1 |
|
|
|
|
|
3 |
35/12 |
−26/3 |
19/2 |
−14/3 |
11/12 |
|
|
|
|
4 |
15/4 |
−77/6 |
107/6 |
−13 |
61/12 |
−5/6 |
|
|
|
5 |
203/45 |
−87/5 |
117/4 |
−254/9 |
33/2 |
−27/5 |
137/180 |
|
|
6 |
469/90 |
−223/10 |
879/20 |
−949/18 |
41 |
−201/10 |
1019/180 |
−7/10 |
|
3
|
1 |
−1 |
3 |
−3 |
1 |
|
|
|
|
|
2 |
−5/2 |
9 |
−12 |
7 |
−3/2 |
|
|
|
|
3 |
−17/4 |
71/4 |
−59/2 |
49/2 |
−41/4 |
7/4 |
|
|
|
4 |
−49/8 |
29 |
−461/8 |
62 |
−307/8 |
13 |
−15/8 |
|
|
5 |
−967/120 |
638/15 |
−3929/40 |
389/3 |
−2545/24 |
268/5 |
−1849/120 |
29/15 |
|
6 |
−801/80 |
349/6 |
−18353/120 |
2391/10 |
−1457/6 |
4891/30 |
−561/8 |
527/30 |
−469/240
|
4
|
1 |
1 |
−4 |
6 |
−4 |
1 |
|
|
|
|
2 |
3 |
−14 |
26 |
−24 |
11 |
−2 |
|
|
|
3 |
35/6 |
−31 |
137/2 |
−242/3 |
107/2 |
−19 |
17/6 |
|
|
4 |
28/3 |
−111/2 |
142 |
−1219/6 |
176 |
−185/2 |
82/3 |
−7/2 |
|
5 |
1069/80 |
−1316/15 |
15289/60 |
−2144/5 |
10993/24 |
−4772/15 |
2803/20 |
−536/15 |
967/240
|
Por exemplo, a primeira derivada com uma precisão de terceira ordem e da segunda derivada com uma precisão de segunda ordem são:
enquanto as aproximações para trás correspondentes são dadas por:
Referências
- LLoyd N. Trefethen, Finite Difference and Spectral Methods for Ordinary and Partial Differential Equations. Cornell University, 1996.