Categoria vírgula

Na teoria das categorias, uma categoria vírgula (em inglês, comma category) é uma categoria cujos objetos correspondem a certos morfismos de outra categoria. Sua definição foi introduzida por William Lawvere, em 1963; o nome provém de uma de suas notações, que usa o sinal de pontuação vírgula.[1][2]

Definição

Para quaisquer functores F : AC e G : BC, pode-se formar a categoria de vírgula FG,[3] também denotada por (FG) e por (F, G),[4] para a qual:

  • a coleção de objetos consiste nas triplas (a, b, f), em que a é objeto de A, b é objeto de B, e f : F(a) → G(b) é morfismo em C;
  • a coleção de morfismos do objeto (a, b, f) ao objeto (a′, b′, f′) consiste nas duplas (h, k), em que h : aa′ é morfismo em A e k : bb′ é morfismo em B, satisfazendo f′F(h) = G(k) ∘ f, condição representada no diagrama comutativo:
  • as identidades e a operação de composição são dadas por:

Exemplos

  • Se F : 1Set for o functor levando o único objeto da categoria com um objeto e sem morfismos além da identidade ao conjunto de um elemento, e se G : BSet é qualquer functor, então FG é isomorfa à categoria de elementos G.[5]
  • Generalizando o exemplo anterior, se F : 1C e G : BC são functores quaisquer, FG é chamada categoria de setas do objeto a ao functor G, onde a é a imagem de F no único objeto de 1, e é denotada habitualmente por aG.[5]
  • Denotando-se por AnelC a categoria dos anéis comutativos, para cada KAnelC, FG, em que F : 1AnelC é o único functor com imagem K e G : AnelCAnelC é o functor identidade, é isomorfa à categoria de álgebras comutativas sobre K. Em vez de FG, pode-se escrever KAnelC.[4]

Limites e colimites

Dados functores F : AC e G : BC, a categoria vírgula FG:

  • é completa desde que A e B sejam completas e G seja functor contínuo;[6]
  • é cocompleta desde que A e B sejam cocompletas e F seja functor cocontínuo.[6][7]

Referências

  1. (Mac Lane, §II.notas)
  2. (Lawvere, §A.3.1, pgs. 12–13): "Unfortunately, I did not suggest a name for the operation, so due to the need for reading it somehow or other, it rather distressingly came to be known by the subjective name 'comma category', even when it came to be also denoted by a vertical arrow in place of the comma."
  3. (Riehl, Exercício 1.3.vi)
  4. a b (Mac Lane, §II.6)
  5. a b (Mac Lane, §III.1)
  6. a b «Comma category – nLab». Consultado em 3 de dezembro de 2020 
  7. (Rydeheard, Burstall 1988, §5.2)

Bibliografia

Ícone de esboço Este artigo sobre matemática é um esboço. Você pode ajudar a Wikipédia expandindo-o.

Read other articles:

Artikel ini tentang tahun 1978. 1978MileniumMilenium ke-2AbadAbad ke-19Abad ke-20 Abad ke-21Dasawarsa 1950-an1960-an1970-an1980-an1990-anTahun1975197619771978197919801981 1978 (MCMLXXVIII) merupakan tahun biasa yang diawali hari Minggu dalam kalender Gregorian, tahun ke-1978 dalam sebutan Masehi (CE) dan Anno Domini (AD), tahun ke-978 pada Milenium ke-2, tahun ke-78 pada Abad ke-20, dan tahun ke- 9 pada dekade 1970-an. Denominasi 1978 untuk tahun ini telah digunakan sejak periode Abad Pe...

 

Academy Awards ke-61Poster resmiTanggal29, Maret 1989TempatShrine AuditoriumLos Angeles, California, A.S.Pembawa acaratidak adaProduserAllan CarrPengarah acaraJeff MargolisSorotanFilm TerbaikRain ManPenghargaan terbanyakRain Man dan Who Framed Roger Rabbit (4)Nominasi terbanyakRain Man (8)Liputan televisiJaringanABCDurasi3 jam, 19 menitPeringkat42.68 juta29.81% (peringkat Nielsen) ← ke-60 Academy Awards ke-62 → Acara Academy Awards ke-61, yang diselenggarakan oleh Academ...

 

Économie du bonheurPersonne clé Richard Layardmodifier - modifier le code - modifier Wikidata Indice de satisfaction de la vie par pays en 2006, selon le psychologue Adrian White[1],[2]. L’économie du bonheur est une branche émergente de l'économie. « Véritable discipline académique, elle s’évertue à observer et analyser les déterminants économiques du bien-être subjectif des individus tel qu’il est déclaré dans les enquêtes[3]. » Elle se distingue de l'écono...

Production company, a subsidiary of Columbia Pictures that oversee the Ghostbusters franchise Ghost Corps, Inc.Company typeSubsidiaryIndustryFilmMerchandiseTelevision productionFoundedMarch 2015; 9 years ago (March 2015)Headquarters10202 West Washington Boulevard, Culver City, California, U.S.Key people Dan Aykroyd Jason Reitman BrandsGhostbustersParentColumbia PicturesWebsiteOfficial Facebook sitewww.ghostbusters.com Ghost Corps, Inc. is an American co-production company formed ...

 

BinckBank Tour 2017 GénéralitésCourse13e Renewi TourCompétitionUCI World Tour 2017 2.UWTÉtapes7Dates7 – 13 août 2017Distance1 080,3 kmPays Pays-Bas BelgiqueLieu de départBrédaLieu d'arrivéeGrammontÉquipes22Partants176Arrivants125Vitesse moyenne43,957 km/hSite officielSite officielRésultatsVainqueur Tom Dumoulin (Team Sunweb)Deuxième Tim Wellens (Lotto-Soudal)Troisième Jasper Stuyven (Trek-Segafredo)Classement par points Peter Sagan (Bora-Hansgrohe)Super-combatif Piet Alleg...

 

Voce principale: Gonzaga. A testimonianza della loro grande fede religiosa, i Gonzaga istituirono numerosi ordini cavallereschi:[1] Indice 1 Ordine del Cordone Giallo 2 Ordine militare del Sangue di Gesù Cristo 3 Ordine della Immacolata Concezione 4 Ordine della Milizia Cristiana 5 Ordine delle dame di Maria Elisa 6 Note 7 Bibliografia 8 Voci correlate Ordine del Cordone Giallo Vincenzo I Gonzaga con le onorificenze del Toson d'Oro e del Redentore. L'Ordine del Cordone Giallo (o Ord...

Japanese politician (1825–1883) In this Japanese name, the surname is Iwakura. This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (November 2019) (Learn how and when to remove this template message) Senior First RankIwakura Tomomi 岩倉 具視Born(1825-10-26)October 26, 1825Kyoto, JapanDiedJuly 20, 1883(1883-07-20) (aged 57)Tokyo, JapanOccupationPoliticia...

 

1984 edition of the ice hockey tournament during the Olympic Winter Games Ice hockey at the 1984 Winter OlympicsTournament detailsHost country YugoslaviaVenue(s)Olympic Hall Zetra, Skenderija Olympic Hall (in 1 host city)Dates7–19 FebruaryTeams12Final positionsChampions  Soviet Union (6th title)Runner-up  CzechoslovakiaThird place  SwedenFourth place CanadaTournament statisticsGames played36Goals scored305 (8.47 per game)Scoring...

 

Public school in Loyalsock Township, Pennsylvania, United StatesLoyalsock Township High SchoolAddress1801 Loyalsock DriveWilliamsportLoyalsock Township, Pennsylvania 17701-2829United StatesCoordinates41°15′39″N 76°58′02″W / 41.2608°N 76.9673°W / 41.2608; -76.9673InformationTypePublicPrincipalMatthew A. ReitzGrades9-12Number of students597 (2016–17[1])Color(s)      Maroon, White and Carolina BlueAthletics conferencePIAAMascotLan...

В Википедии есть статьи о других людях с фамилией Мур. Роджер Джордж Мурангл. Roger George Moore Имя при рождении англ. Roger George Moore Дата рождения 14 октября 1927(1927-10-14) Место рождения Стоквелл[d], Лондонское графство, Англия, Великобритания[1] Дата смерти 23 мая 2017(2017-05...

 

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

 

Armor applied to a warship's hull This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Belt armor – news · newspapers · books · scholar · JSTOR (August 2021) (L...

Subsecretaría de Ciencia, Tecnología, Conocimiento e Innovación El Palacio de La Moneda, sede del Ministerio de Ciencia, donde se ubica la subsecretaría homónima.LocalizaciónPaís ChileInformación generalJurisdicción NacionalTipo SubsecretaríaSede Palacio de La Moneda s/n, piso 2, ala sur poniente, Santiago.OrganizaciónSubsecretaria Carolina Gainza CortésDepende de Ministerio de Ciencia, Tecnología, Conocimiento e InnovaciónPresupuesto 126 621 780 miles de pesos ch...

 

Constituency of the Bihar legislative assembly in India Hisua Assembly constituencyConstituency No. 236 for the Bihar Legislative AssemblyConstituency detailsCountryIndiaRegionEast IndiaStateBiharDistrictNawadaLS constituencyNawada (Lok Sabha constituency)Established1957ReservationNoneMember of Legislative Assembly17th Bihar Legislative AssemblyIncumbent Nitu Kumari PartyIndian National CongressElected year2020 Hisua is an Assembly constituency of the Legislative Assembly of Bihar covering t...

 

Province in Italian-annexed Slovenia (1941–1943) The Province of Ljubljana (Italian: Provincia di Lubiana, Slovene: Ljubljanska pokrajina, German: Provinz Laibach) was the central-southern area of Slovenia. In 1941, it was annexed by the Kingdom of Italy, and after 1943 occupied by Nazi Germany. Created on May 3, 1941, it was abolished on May 9, 1945, when the Slovene Partisans and partisans from other parts of Yugoslavia liberated it from the Nazi Operational Zone of the Adriatic Littoral....

بحر تراقياالموقع الجغرافي / الإداريالإحداثيات 40°22′N 25°10′E / 40.37°N 25.17°E / 40.37; 25.17 جزء من بحر إيجة التقسيم الإداري اليونان[1] دول الحوض اليونان[1] — تركيا هيئة المياهالنوع بحر[1] مصب الأنهار ماريتسا — Nestos (en) — Vosvozis (en) القياساتعمق 1٬600 م تعديل - تعديل مصدر�...

 

The Church of St Peter, Monks Horton Monks Horton is a small civil parish in the Folkestone and Hythe district of Kent, England. It is located 3 miles (5 km) north of Hythe. Within the civil parish are the hamlets of Horton and Broad Street. The parish is governed by a parish meeting, rather than a parish council, because of its small size. The name comes from there having been a medieval priory built here.[1] Mount Morris, Monks Horton, the Seat of Morris Drake Morris, Esq. Eng...

 

Questa voce sull'argomento stagioni delle società calcistiche italiane è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Voce principale: Ascoli Calcio 1898. Associazione Sportiva Del Duca AscoliStagione 1967-1968Sport calcio Squadra Del Duca Ascoli Allenatore Emidio Fioravanti e Dino da Costa Presidente Leone Chicchi Serie C8º posto nel girone B. Maggiori presenzeCampionato: Pierbattista (36) Mig...

  لمعانٍ أخرى، طالع حزب الإصلاح (توضيح). حزب الإصلاح البلد موريتانيا  تعديل مصدري - تعديل   حزب الإصلاح هو حزب سياسي في موريتانيا بقيادة سيدنا ولد محمد.[1] التاريخ انضم الحزب إلى التحالف المؤيد للرئيس محمد ولد عبد العزيز في مارس 2011.[1] فاز بمقعد واحد في الانتخ�...

 

Commune in Île-de-France, FranceArcueilCommuneMaison des Gardes, part of the Guise Castle Coat of armsLocation of Arcueil ArcueilShow map of FranceArcueilShow map of Île-de-France (region)Coordinates: 48°48′27″N 2°20′10″E / 48.8075°N 2.3361°E / 48.8075; 2.3361CountryFranceRegionÎle-de-FranceDepartmentVal-de-MarneArrondissementL'Haÿ-les-RosesCantonCachanIntercommunalityGrand ParisGovernment • Mayor (2020–2026) Christian Métairie[1...