A Night at Greenway Court

"A Night at Greenway Court"
Autor(es) Willa Cather
Idioma Inglês
País Estados Unidos
Gênero Conto
Editora Nebraska Literary Magazine
Formato periódico
Lançamento Junho de 1896

"A Night at Greenway Court" é um conto de Willa Cather. Foi publicado pela primeira vez na Nebraska Literary Magazine em junho de 1896.[1] Quatro anos depois, uma versão revisada foi publicada na Library.[2]

Resumo do enredo

Em 1752, Richard Morgan — um cidadão de Winchester, Virgínia — visita seu amigo Lord Fairfax no vizinho Greenway Court. Lá, ele conhece Philip Maurepas, um francês que lhes conta sobre seus anos na Índia. Ele expressa seu desdém pelo Rei, para desgosto do Visconde Chillingham. Eles comparam as ordens políticas tanto na Inglaterra quanto na França. Maurepas então ataca Fairfax por causa da pintura de uma mulher com um lírio que ele tem. No dia seguinte, Fairfax age regiamente e finge que nada aconteceu. O narrador conclui que agiu de acordo com seu dever virginiano. De interesse histórico, mas não é a obra mais celebrada de Cather.

Personagens

  • Richard Morgan, o narrador.
  • Pai de Richard Morgan.
  • Josiah Goodrich, amigo de Richard Morgan.
  • M. Philip Marie Maurepas, um jogador que deixou a França por causa de suas dívidas. Ele aprendeu inglês na Índia.
  • Senhor Thomas Fairfax
  • Visconde Chillingham
  • Sr. Courtney, um pastor.
  • Fernando Fairfax, um antepassado de Thomas.
  • Senhora Crawford, governanta de Thomas.
  • Murzapha Jung, aliado de Dupleix.
  • Nabob de Carnatic, inimigo de Dupleix.
  • Tecunda Sahib, inimiga de Nabob.

Referências à história real

Significado literário e crítica

A história foi considerada poética.[3] Também foi dito que foi "saído diretamente de" Henry Esmond, de William Makepeace Thackeray.[4] Outros salientaram a influência de John Esten Cooke, que escreveu sobre Greenway Court,[5] ou Anthony Hope.[6]

Referências

  1. Willa Cather's Collected Short Fiction, University of Nebraska Press; Rev Ed edition, 1 November 1970, page 492
  2. Sheryl L. Meyering, A Reader's Guide to the Short Stories of Willa Cather, G.K. Hall & Co, 1995, p. 157
  3. Mildred R. Bennett, The World of Willa Cather, University of Nebraska Press, 1961, page 5
  4. Catherine M. Downs, Becoming Modern: Willa Cather's Journalism, Susquehanna University Press, 2000, page 141
  5. Bernice Slote, The Kingdom of Art, Lincoln: University of Nebraska Press, 1966, p. 41
  6. James Woodress, Willa Cather: Her Life and Art, New York: Pegasus, 1970, p. 28

Ligações externas

Read other articles:

Penstabil membujur atau sirip ekor, dari pesawat, rudal atau bom biasanya ditemukan di ujung belakang dari pesawat, dan dimaksudkan untuk mengurangi aerodinamis side slip dan memberikan stabilitas arah. Hal ini analog dengan skeg di perahu dan kapal. Pada pesawat, penstabil membujur umumnya mengarah ke atas. Ini juga dikenal sebagai ekor membujur, dan merupakan bagian dari sebuah empennage pesawat. Trailing akhir penstabil yang biasanya bergerak, dan disebut kemudi, hal ini memungkinkan pilo...

 

Den här artikeln behöver fler eller bättre källhänvisningar för att kunna verifieras. (2016-01) Åtgärda genom att lägga till pålitliga källor (gärna som fotnoter). Uppgifter utan källhänvisning kan ifrågasättas och tas bort utan att det behöver diskuteras på diskussionssidan. Ole Lund KirkegaardFödd29 juli 1940[1][2]Århus[3], DanmarkDöd24 mars 1979[1][2] (38 år)Stenderup, DanmarkMedborgare iDanmark[1]Utbildad vidAarhus katedralskoleÅrhus lärarseminarium...

 

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапсиды�...

 

Niedermorschwihrcomune Niedermorschwihr – Veduta LocalizzazioneStato Francia RegioneGrand Est Dipartimento Alto Reno ArrondissementRibeauvillé CantoneWintzenheim TerritorioCoordinate48°06′N 7°17′E / 48.1°N 7.283333°E48.1; 7.283333 (Niedermorschwihr)Coordinate: 48°06′N 7°17′E / 48.1°N 7.283333°E48.1; 7.283333 (Niedermorschwihr) Superficie3,35 km² Abitanti580[1] (2009) Densità173,13 ab./km² Altre informazioniCod. p...

 

Open standard for programming heterogenous computing systems, such as CPUs or GPUs Not to be confused with OpenGL. For the cryptographic library initially known as OpenCL, see Botan (programming library). This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensu...

Sceaux 行政国 フランス地域圏 (Région) イル=ド=フランス地域圏県 (département) オー=ド=セーヌ県郡 (arrondissement) アントニー郡小郡 (canton) 小郡庁所在地INSEEコード 92071郵便番号 92330市長(任期) フィリップ・ローラン(2008年-2014年)自治体間連合 (fr) メトロポール・デュ・グラン・パリ人口動態人口 19,679人(2007年)人口密度 5466人/km2住民の呼称 Scéens地理座標 北緯48度4...

 

Историческое государствоПротекторат ТонкинProtectorat du Tonkin Флаг Тонкин на карте Индокитайского Союза ←   → 1884 — 1948 Столица Ханой Язык(и) вьетнамский Денежная единица Индокитайский пиастр  Медиафайлы на Викискладе История Вьетнама Доисторические времена от 500 ...

 

2016年美國總統選舉 ← 2012 2016年11月8日 2020 → 538個選舉人團席位獲勝需270票民意調查投票率55.7%[1][2] ▲ 0.8 %   获提名人 唐納·川普 希拉莉·克林頓 政党 共和黨 民主党 家鄉州 紐約州 紐約州 竞选搭档 迈克·彭斯 蒂姆·凱恩 选举人票 304[3][4][註 1] 227[5] 胜出州/省 30 + 緬-2 20 + DC 民選得票 62,984,828[6] 65,853,514[6]...

Industrial dynasty matriarch (1886–1957) This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (February 2012) (Learn how and when to remove this message) Bertha Krupp von Bohlen und HalbachBertha KruppBornBertha Krupp29 March 1886Essen, Rhine Province, Kingdom of Prussia, German EmpireDied21 September 1957(1957-09-21) (aged 71)Essen, North Rhine-Westphalia, ...

 

Pashtun-style minced kebab eaten throughout South Asia Chapli kababLamb chapli kabab served at a Balti restaurant in Birmingham, UKAlternative namesPeshawari chapli kababTypeKebabCourseAppetiser, main course or side dishPlace of originPeshawar, Pakistan[1][2][3][4]Associated cuisinePakistani,[5] AfghanMain ingredientsMinced beef, mutton, or chickenIngredients generally usedVarious herbs and spicesSimilar dishesBurgers  Media: Chapli kabab ...

 

Questa voce sull'argomento fiumi della Cina è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. HuangpuIl fiume a ShanghaiStato Cina Lunghezza97 km Bacino idrografico3 653 km² SfociaFiume Azzurro Modifica dati su Wikidata · Manuale L'Huangpu (黃浦江T, 黄浦江S, Huángpǔ JiāngP, Huang-p'u ChiangW, lett. Fiume dall'Argine Giallo) è un fiume lungo 97 km che attraversa la città di Shanghai, in Cina. Foto satellit...

  هذه المقالة عن أنكوريج (ألاسكا). لمعانٍ أخرى، طالع أنكوريج (توضيح). أنكوريج    علم شعار الشعار:(بالإنجليزية: Big Wild Life)‏  الاسم الرسمي (بالإنجليزية: Anchorage)‏    الإحداثيات 61°13′00″N 149°53′37″W / 61.216666666667°N 149.89361111111°W / 61.216666666667; -149.89361111111   [1] تا�...

 

2003 aviation accident FedEx Express Flight 647The aircraft after the fire.AccidentDateDecember 18, 2003 (2003-December-18)SummaryPilot error[1]SiteMemphis International Airport, Memphis, Tennessee, United States35°01′59.9″N 89°58′18.7″W / 35.033306°N 89.971861°W / 35.033306; -89.971861AircraftAircraft typeMcDonnell Douglas MD-10-10FAircraft nameAmberOperatorFedEx ExpressRegistrationN364FEFlight originMetropolitan Oakland In...

 

2023 English local election 2023 Medway Council election ← 2019 4 May 2023 (2023-05-04) 2027 → All 59 seats to Medway Council30 seats needed for a majority   First party Second party Third party   Leader Vince Maple Alan Jarrett George Crozer Party Labour Conservative Independent Last election 20 seats, 33.2% 33 seats, 40.1% 2 seats, 9.3% Seats won 33 22 4 Seat change 13 11 2 Popular vote 61,612 53,841 7,921 Percentage 44.4% 3...

Royal Air Force Air Marshal (1895-1948) Sir Arthur ConinghamConingham in 1944Nickname(s)'Mary'Born(1895-01-19)19 January 1895Brisbane, AustraliaDiedpresumably 30 January 1948(1948-01-30) (aged 53)AllegianceNew Zealand (1914–16)United Kingdom (1916–47)Service/branchNew Zealand Expeditionary ForceRoyal Air ForceYears of service1914–47RankAir MarshalCommands heldFlying Training Command (1945–47)2nd Tactical Air Force (1944–45)North African Tactical Air Force (1943–44)Air HQ...

 

比利時聯邦議會 荷蘭語:Federaal Parlement van België法語:Parlement fédéral belge德語:Föderales Parlament von Belgien參議院標誌眾議院標誌种类种类兩院制架构參議院眾議院领导參議院議長萨比娜·拉吕埃勒(英语:Sabine Laruelle)(革新運動) 自2019年7月18日眾議院議長帕特里克·德瓦尔(英语:Patrick Dewael)(開放弗拉芒自由民主黨) 自2019年6月27日结构议员21060 參議員150 眾議員政党�...

 

UFC mixed martial arts event in 2013 UFC on Fuel TV: Barão vs. McDonaldThe poster for UFC on Fuel TV: Barão vs. McDonaldInformationPromotionUltimate Fighting ChampionshipDateFebruary 16, 2013VenueWembley ArenaCityLondon, United KingdomAttendance10,349[1]Total gate$1,300,000[1]Event chronology UFC 156: Aldo vs. Edgar UFC on Fuel TV: Barão vs. McDonald UFC 157: Rousey vs. Carmouche UFC on Fuel TV: Barão vs. McDonald (also known as UFC on Fuel TV 7) was a mixed martial arts e...

Para otros usos de este término, véase República de Serbia (desambiguación). República Serbia de KrajinaRepublika Srpska Krajina Estado no reconocido 1991-1998BanderaEscudo Lema: Samo sloga Srbina spasava («solo la unidad salva a los serbios») Himno: Boze Pravde En rojo, la República Serbia de KrajinaCoordenadas 44°02′33″N 16°11′57″E / 44.0425, 16.199166666667Capital KninEntidad Estado no reconocidoIdioma oficial SerbioSuperficie   • Total 17...

 

Type of matrix in algebraic graph theory In the mathematical field of algebraic graph theory, the degree matrix of an undirected graph is a diagonal matrix which contains information about the degree of each vertex—that is, the number of edges attached to each vertex.[1] It is used together with the adjacency matrix to construct the Laplacian matrix of a graph: the Laplacian matrix is the difference of the degree matrix and the adjacency matrix.[2] Definition Given a graph G...