Ładunek elektryczny ciała może być dodatni lub ujemny. Dwa ładunki jednego znaku odpychają się, a pomiędzy ładunkiem dodatnim i ujemnym działa siła przyciągająca.
Ładunki elektryczne są skwantowane, elektronowi przypisano elementarny ładunek ujemny, protonowi dodatni. Oddziaływania naładowanych cząstek elementarnych bada elektrodynamika kwantowa, opisuje się je za pomocą wymiany fotonu.
Często używa się skrótowego pojęcia ładunek elektryczny dla ciała obdarzonego ładunkiem elektrycznym.
Uporządkowany ruch ładunków elektrycznych nazywany jest prądem elektrycznym.
Historia
Oddziaływania elektrostatyczne były znane już starożytnym Grekom, którzy odkryli, że bursztyn (po gr.elektron) po potarciu przyciąga drobne przedmioty.
W XVI wieku William Gilbert wykazał, że podobną właściwość mają różne inne ciała. On też utworzył nazwę sił elektrycznych, od greckiego słowa elektron – bursztyn.
Benjamin Franklin zaproponował do ich opisu znaki dodatni i ujemny. Badał elektryczność atmosferyczną. Stwierdził, że znane dotychczas „rodzaje elektryczności” (statyczna, atmosferyczna, zwierzęca i prądu elektrycznego) są różnymi przejawami obecności ładunków elektrycznych.
Około roku 1663 Otto von Guericke zbudował pierwszą maszynę elektrostatyczną, umożliwiającą ciągłe wytwarzanie ładunku elektrycznego[2]. Zasadniczą częścią maszyny była obracająca się kula z siarki, która ładowała się poprzez tarcie.
Charles Coulomb w 1785 roku sformułował prawo określające siłę działającą pomiędzy dwoma ładunkami. Dało to początek ilościowemu opisowi zjawisk elektrycznych.
Istnienie najmniejszych porcji (kwantów) ładunku odkrył doświadczalnie w 1910 roku Robert Millikan, za co między innymi w roku 1923 otrzymał Nagrodę Nobla.
Oddziaływanie ładunków z innymi ładunkami i polem elektromagnetycznym
Podstawową cechą ładunków elektrycznych jest zdolność oddziaływania z innymi ładunkami, a także wytwarzania pól elektrycznego i magnetycznego, oraz oddziaływania z nimi.
Wartość oddziaływania dwóch punktowych lub posiadających symetrię sferyczną ładunków i jest wprost proporcjonalna do iloczynu tych ładunków i odwrotnie proporcjonalna do kwadratu odległości między nimi Można to przedstawić za pomocą wzoru:
w którym:
– to współczynnik proporcjonalności. Jeżeli ładunki są jednoimienne, oddziaływanie jest odpychaniem. W przypadku ładunków różnoimiennych ładunki przyciągają się.
Poruszające się ładunki wytwarzają pole magnetyczne. Pole magnetyczne wytworzone w danym miejscu przestrzeni przez poruszający się ruchem jednostajnym ładunek określa prawo Biota-Savarta:
Na ładunki poruszające się w polu magnetycznym działa siła proporcjonalna do ich wartości, prędkości i wartości indukcji pola magnetycznego. Jej kierunek jest prostopadły do kierunku ruchu ładunku i do kierunku pola magnetycznego.
Całkowita suma ładunków w układzie zamkniętym jest stała. Oznacza to w praktyce, że zmiana ładunku elektrycznego układu musi być rezultatem wymiany ładunku z otoczeniem. Elektryzowanie ciał polega na rozdzieleniu istniejących już ładunków. Jeżeli zaś w jakimś procesie fizycznym powstaje ładunek, zawsze towarzyszy mu wytworzenie ładunku o przeciwnym znaku, takiego samego co do wartości bezwzględnej.
Matematycznym ujęciem zasady zachowania ładunku jest równanie ciągłości.
Z zasady zachowania ładunku wynika, że całkowity ładunek obecny we wszechświecie jest stały, ale nie daje ona odpowiedzi na pytanie, jaka jest wartość tego ładunku. Nie zaobserwowano jednak żadnych zjawisk, które mogłyby świadczyć o tym, że jest różny od zera.
Relatywistyczna niezmienniczość ładunku
Mierzalna wartość ładunku jest jednakowa we wszystkich inercjalnych układach odniesienia. Oznacza to, że ruch cząstki nie ma wpływu na wartość jej ładunku[3].
Ładunek elektryczny jest wewnętrzną własnością części cząstek elementarnych. Za jednostkowy ładunek elementarny uznaje się ładunek protonu. Ładunek elektronu, taki sam co do wartości bezwzględnej, jest ujemny.
Ładunek jest wielkością skwantowaną, co oznacza, że ładunek każdego obiektu jest zawsze całkowitą wielokrotnością ładunku elementarnego.
W ramach Modelu Standardowego cząstek elementarnych kwarki mają ładunek ułamkowy równy −1/3 lub +2/3 ładunku elementarnego, a antycząstki posiadają ładunek o znaku przeciwnym. Kwarki nigdy jednak nie występują osobno, lecz zawsze tworzą układy złożone, których łączny ładunek jest sumą ładunków kwarków składowych, w ten sposób cząstki mają ładunek całkowity.
Kwazicząstki nie są rzeczywistymi cząstkami, ale obiektami sztucznie zdefiniowanymi i jako takie mogą mieć ładunek niebędący wielokrotnością ładunku elementarnego. W 1982 Robert Laughlin wyjaśnił ułamkowy efekt Halla za pomocą kwazicząstek o ułamkowym ładunku, ale nie uważa się by było to złamanie zasady skwantowania ładunku elektrycznego.
Gęstość ładunku elektrycznego to ilość ładunku elektrycznego przypadająca na miarę objętościpowierzchni lub długości mówi się wtedy odpowiednio o gęstościach:
objętościowej (krótko: gęstości)
powierzchniowej
i liniowej
których jednostkami (pochodnymi) w układzie SI są kulomb na kolejno metr sześcienny, metr kwadratowy i metr. Ładunki rozciągłe, których gęstość jest stała nazywa się jednorodnymi, a ciała naładowane takimi ładunkami naładowanymi jednorodnie.
Szczególne konfiguracje ładunku
Ładunek punktowy
Ładunek punktowy jest to wyidealizowany model, ciało o nieskończenie małych rozmiarach zawierające ładunek elektryczny. W rzeczywistości ciała naładowane są rozciągłe, ale model ten jest użyteczny i dobrze opisuje oddziaływanie naładowanych ciał, gdy odległość między naładowanymi ciałami jest znacznie większa od rozmiarów tych ciał, lub ładunki mają symetrię sferyczną.
Ładunek sferyczny
Jednorodnie naładowane sfery oddziałują tak, jakby cały ich ładunek był skupiony w geometrycznym środku sfery. Wewnątrz takiego ładunku sferycznego pole elektryczne zanika (natężenie pola elektrycznego jest równe zeru).
Jednostka ładunku
W układzie SI jednostką ładunku jest kulomb (C), 1 C jest równy około 6,24·1018 ładunków elementarnych
W fizyce wykorzystuje się również zaproponowany przez Maxa Plancka system jednostek naturalnych zdefiniowanych wyłącznie jak kombinacje stałych fizycznych. W systemie tym jednostka ładunku wyraża się przez