Jej model można uzyskać, sklejając taśmę końcami przy odwróceniu jednego z końców o kąt 180°[7][8][9][10]. Stylizowana wstęga Möbiusa jest symbolem recyklingu[11]; w innej stylizacji jest obecna w logotypie Międzynarodówki humanistycznej. W sztuce znana jest z grafiki Mauritsa Cornelisa Eschera przedstawiającej mrówki idące po wstędze Möbiusa[12].
Wstęga Möbiusa przy odpowiednim ułożeniu przypomina symbol nieskończoności co może prowadzić do błędnych przypuszczeń, że symbol ten pochodzi od wstęgi Möbiusa[a].
Wstęgę Möbiusa można skonstruować z prostokąta wprowadzając relację dla która utożsamia dwie przeciwległe krawędzie, wraz z topologią ilorazową względem relacji [14].
Innym sposobem jest określenie parametryzacji tej powierzchni[10]. Niech dany będzie odcinek długości i środku poruszający się w przestrzeni o początku układu w ten sposób, że punkt zakreśla okrąg sparametryzowany równaniami:
gdzie [10]. Niech odcinek będzie stale prostopadły do a kąt nachylenia tego odcinka do płaszczyzny niech równa się [10]. Wtedy odcinek zakreśla wstęgę Möbiusa o parametryzacji:
gdzie oraz [10]. Zmiana parametru powoduje poruszanie punktu wzdłuż wstęgi, zmiana parametru – w poprzek.
Własności topologiczne
Wstęgę Möbiusa można zanurzyć w przestrzeni trójwymiarowej. Jej nieorientowalność oznacza, że ma tylko jedną stronę, tzn. jest powierzchnią jednostronną[1][15][10]. W przypadku gładkich parametryzacji oznacza to, że oś normalna wstęgi Möbiusa nie może być funkcją ciągłą na całej powierzchni wstęgi[14].
Jej brzeg jest homeomorficzny z okręgiem. Oznacza to, wstęga ma tylko jedną intuicyjnie rozumianą krawędź, w przeciwieństwie np. do powierzchni bocznej walca, która ma dwie krawędzie. „Zaklejenie” tego brzegu (niemożliwe w przestrzeni trójwymiarowej) kołem daje płaszczyznę rzutową, „zaklejenie” tego brzegu inną wstęgą Möbiusa daje butelkę Kleina[16]. Płaszczyzna rzutowa i butelka Kleina są innymi przykładami powierzchni nieorientowalnej. Zachodzi ogólna własność: powierzchnia jest nieorientowalna wtedy i tylko wtedy, gdy zawiera podzbiór homeomorficzny ze wstęgą Möbiusa.
Jednokrotne przecięcie wstęgi Möbiusa wzdłuż linii środkowej w połowie szerokości
Przecięcie wstęgi Möbiusa wzdłuż linii środkowej na 1/3 szerokości
Różne sposoby rozcinana wstęgi Möbiusa
Rozcięcie wstęgi Möbiusa wzdłuż jej linii środkowej nie powoduje jej rozkładu na dwa rozłączne obiekty[1][7][19], lecz powoduje otrzymanie dwukrotnie dłuższej, dwukrotnie skręconej obręczy (posiadającej dwie strony). Rozcięcie wstęgi Möbiusa wzdłuż w jednej trzeciej szerokości powoduje otrzymanie jednej węższej wstęgi Möbiusa o długości równej wyjściowej wstędze oraz splecionej z nią dwukrotnie dłuższej, dwukrotnie skręconej obręczy. W wyniku przecięcia taśmy skręconej przed sklejeniem nie o 180°, jak w przypadku wstęgi Möbiusa, ale 360°, otrzymuje się dwa kręgi węzłowe, połączone jak ogniwa w łańcuchu[19].
↑ abSzczepan Jeleński: Śladami Pitagorasa. Rozrywki matematyczne, opracowała Emilia Jeleńska pod redakcją A.M. Kusieckiego, Wydanie ósme. Warszawa: Wydawnictwa Szkolne i Pedagogiczne, 1988, s. 194.