Szwedy (Litwa)
|
Read other articles:
Djenderal KantjilSutradaraNya Abbas AkupProduserUsmar IsmailDitulis olehNya Abbas AkupM. Alwi DahlanPemeranAchmad AlbarMenzanoAchmad BadruzamanChitra DewiGondoMahjuddinMangopul PanggabeanRendra KarnoTeguh KaryaSrihardjonoDistributorPerfiniTanggal rilis1958Durasi... menitNegaraIndonesia Djenderal Kantjil adalah film Indonesia yang dirilis pada tahun 1958 dengan disutradarai oleh Nya Abbas Akup. Film ini dibintangi antara lain oleh Achmad Albar, Rendra Karno dan Menzano. Sebelumnya Rhoma Irama ...
Absalon-class frigate of the Royal Danish Navy For other ships with the same name, see HDMS Esbern Snare. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: HDMS Esbern Snare F342 – news · newspapers · books · scholar · JSTOR (November 2014) (Learn how and when to remove this template message) HDMS Esbern ...
Камень с острова Готланд с надписью finlandi Топонимия Финляндии — совокупность географических названий, включающая наименования природных и культурных объектов на территории Финляндии. По оценке В. А. Жучкевича, топонимия Финляндии значительно отличается от топо...
OkjeoHangul옥저 Hanja沃沮 Alih AksaraOkjeoMcCune–ReischauerOkchŏ Bagian dari seri mengenai Sejarah Korea Prasejarah Zaman Jeulmun Zaman Mumun Kuno Gojoseon 2333 SM - 108 SM Jin Proto Tiga Kerajaan Buyeo Goguryeo Okjeo Dongye Samhan Mahan Byeon Jin Empat Jun di Dinasti Han Tiga Kerajaan Goguryeo 37 SM – 668 M Baekje 18 SM – 660 M Silla 57 SM – 935 M Konfederasi Gaya 42 M - 562 M Zaman Negara Utara-Selatan Silla Bersatu 668–935 Balhae 698–926 Tiga Kerajaan Akhir Baekje Akhir 89...
Classical Chinese poem This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensure the article remains verifiable and maintains a consistent citation style. Several templates and tools are available to assist in formatting, such as reFill (documentation) and Citation bot (documentation). (August 2022) (Learn how and when to remove this template message) A collection of typical ge and crossbow bolts from the Warri...
Bagian dari seri tentangHierarki Gereja KatolikSanto Petrus Gelar Gerejawi (Jenjang Kehormatan) Paus Kardinal Kardinal Kerabat Kardinal pelindung Kardinal mahkota Kardinal vikaris Moderator kuria Kapelan Sri Paus Utusan Sri Paus Kepala Rumah Tangga Kepausan Nunsio Apostolik Delegatus Apostolik Sindik Apostolik Visitor apostolik Vikaris Apostolik Eksarkus Apostolik Prefek Apostolik Asisten Takhta Kepausan Eparkus Metropolitan Batrik Uskup Uskup agung Uskup emeritus Uskup diosesan Uskup agung u...
Town in North Rhine-Westphalia, GermanyRatingen TownRatingen FlagCoat of armsLocation of Ratingen within Mettmann district Ratingen Show map of GermanyRatingen Show map of North Rhine-WestphaliaCoordinates: 51°18′N 6°51′E / 51.300°N 6.850°E / 51.300; 6.850CountryGermanyStateNorth Rhine-WestphaliaAdmin. regionDüsseldorf DistrictMettmann Subdivisions6 boroughs with 10 districtsGovernment • Mayor (2020–25) Klaus Konrad Pesch[1] (Ind.)Are...
Міністерство оборони України (Міноборони) Емблема Міністерства оборони та Прапор Міністерства оборони Будівля Міністерства оборони у КиєвіЗагальна інформаціяКраїна УкраїнаДата створення 24 серпня 1991Попередні відомства Міністерство оборони СРСР Народний комісарі...
Il Grammy Award per la canzone dell'anno (Grammy Award for Song of the Year) è uno dei quattro premi Grammy più prestigiosi, che premia coloro che si occupano del testo e del sound di un brano di un determinato artista (può essere premiato l’artista stesso solo se ha scritto o co-scritto il brano). Questi premi vengono assegnati annualmente dal 1959, lo stesso anno del debutto della premiazione. Si differenzia dal premio registrazione dell'anno perché quest'ultimo premia il cantante e c...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Woman to Woman Beverley Craven song – news · newspapers · books · scholar · JSTOR (January 2021) (Learn how and when to remove this message) 1990 single by Beverley CravenWoman to WomanSingle by Beverley Cravenfrom the album Beverley Craven Released1990 (U...
United States Air Force general This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Lance L. Smith – news · newspapers · books · scholar · JSTOR (March 2013) (Learn how and when to remove this messa...
Luís Miguel Poiares Pessoa Maduro Advokat Jenderal Mahkamah EropaMasa jabatan2003–2009 Informasi pribadiKebangsaanPortugal Penghargaan Commander of the Military Order of Saint James of the Sword (en) Sunting kotak info • L • B Luís Miguel Poiares Pessoa Maduro adalah seorang yuris (ahli hukum) asal Portugal yang dikenal akan kiprahnya sebagai Advokat Jenderal (Advocate General) di Mahkamah Eropa (European Court of Justice atau disingkat ECJ). Ia mulai menjabat sebagai advoka...
ゾンヴァイア/死霊大血戦 Legion of the Dead 監督 オラフ・イッテンバッハ脚本 オラフ・イッテンバッハ製作 Michael J. PoettingerClaudia Quirchmayr出演者 マイケル・カーラッセル・フリーデンバーグキンバリー・リーベ ハンク・ストーンハーヴィー・J・アルパリンマティアス・ヒューズクリストファー・クリーサダレン・シャラーヴィ音楽 ヤロ・メッサーシュミットラルフ・ヴェ�...
画像提供依頼:グラビアアイドルとして活動中の写真の画像提供をお願いします。(2024年1月) とまる さやか都丸 紗也華 画像募集中プロフィール別名義 理紗アレキサンダー愛称 とまるまる[1]生年月日 1996年9月26日現年齢 28歳出身地 日本・群馬県渋川市[2]血液型 AB型[3]公称サイズ(2020年[4][5]時点)身長 / 体重 157 cm / ― kgスリーサイズ 88 -...
Mathematical function whose derivative exists A differentiable function In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain. In other words, the graph of a differentiable function has a non-vertical tangent line at each interior point in its domain. A differentiable function is smooth (the function is locally well approximated as a linear function at each interior point) and does not contain any break, angle, or cusp...
Overman Wheel CompanyOverman Automobile Company Rechtsform Company Gründung 1882 Auflösung 1902 Auflösungsgrund Zusammenschluss Sitz Chicopee Falls, Massachusetts, USA Leitung Albert H. Overman Branche Fahrzeuge Hochrad von 1889 Overman Automobile Company, vorher Overman Wheel Company, war ein US-amerikanischer Hersteller von Fahrzeugen.[1][2] Inhaltsverzeichnis 1 Unternehmensgeschichte 2 Kraftfahrzeuge 3 Literatur 4 Weblinks 5 Einzelnachweise Unternehmensgeschichte Albert...
Sebuah rumah sakit di Johor Bahru, Johor. Berikut ini adalah daftar rumah sakit pemerintah dan swasta yang ada di Malaysia. Rumah sakit pemerintah Kedah Hospital Alor Setar Hospital Kulim Hospital Baling Hospital Sik Hospital Langkawi Hospital Yan Hospital Jitra Hospital Kuala Nerang Hospital Sungai Petani Hospital Judo King Perlis Hospital Kangar (Tuanku Fauziah) Hospital Pakar KPJ Perlis Penang Hospital Gleneagles Penang Hospital Pulau Pinang Hospital Sungai Bakap Hospital Bukit Mertajam Ho...
Tree which includes all vertices of a graph For the network protocol, see Spanning Tree Protocol. For other uses, see Spanning tree (disambiguation). A spanning tree (blue heavy edges) of a grid graph In the mathematical field of graph theory, a spanning tree T of an undirected graph G is a subgraph that is a tree which includes all of the vertices of G.[1] In general, a graph may have several spanning trees, but a graph that is not connected will not contain a spanning tree (see abou...
NGC 1636 La galaxie spirale NGC 1636 Données d’observation(Époque J2000.0) Constellation Éridan Ascension droite (α) 04h 40m 40,2s[1] Déclinaison (δ) −08° 36′ 28″ [1] Magnitude apparente (V) 13,0[2] 13,8 dans la Bande B[2] Brillance de surface 13,08 mag/am2[2] Dimensions apparentes (V) 1,2′ × 0,9′[2] Décalage vers le rouge 0,013846 ± 0,000017[1] Angle de position 0°[2] Localisation dans la constellation : Éridan Astrométrie Vites...
The set of finitely supported functions from a group to a ring This article is about the algebraic group ring of a group. For the case of a topological group, see group algebra of a topological group. In algebra, a group ring is a free module and at the same time a ring, constructed in a natural way from any given ring and any given group. As a free module, its ring of scalars is the given ring, and its basis is the set of elements of the given group. As a ring, its addition law is that of th...