Medium transmisyjne – nośnik używany do transmisji sygnałów w telekomunikacji. Jest podstawowym elementem systemów telekomunikacyjnych. Możliwości transmisji zależą od parametrów użytego medium. Wyróżnia się media przewodowe i bezprzewodowe.
Rodzaje medium transmisyjnego
Media transmisyjne można podzielić na przewodowe oraz bezprzewodowe.
Skrętka
składa się z ośmiu żył (czterech par żył). Żyły w skrętkach są ze sobą splecione parami. Każda para skrętki posiada jedną żyłę do przenoszenia napięcia, a drugą uziemioną. Jakikolwiek szum pojawiający się w jednej żyle, występuje także w drugiej. Ponieważ żyły w parze są spolaryzowane przeciwnie w stosunku do siebie, szum pojawiający się w jednej żyle jest „znoszony” przez szum z drugiej żyły na końcu kabla dołączonego do odbiornika. Skrętki są najczęściej używane w systemach, które do transmisji używają kodu Manchester. Stopień w jakim zakłócenia są wyeliminowane zależy od ilości splotów przypadających na jednostkę metra. Większa ilość splotów na metr gwarantuje zmniejszenie szumu. Dla jeszcze większej ochrony przed zakłóceniami stosuje się ekran w postaci folii, w którą zawinięte są pary żył oraz uziemienie. Folia może być owinięta wokół pojedynczych par lub wszystkich żył. Impedancja typowej skrętki wynosi 100Ω, a maksymalna prędkość transmisji wynosi 1 Gbit/s (10Gbit/s w przypadku kategorii 6a kabla).
Maksymalna odległość pomiędzy urządzeniami połączonymi skrętką nie powinna przekraczać 100 m (55 m dla 10Gbit/s). Wyróżnia się następujące rodzaje skrętek:
Składa się z dwóch przewodników – wewnętrznego (żyły podstawowej) i zewnętrznego (ekranu), które są oddzielone ochronną warstwą izolacyjną (dielektrykiem). Ekran chroni przewód wewnętrzny przed zakłóceniami. Kable koncentryczne stosuje się powszechnie do łączenia anten, do połączeń AV, w sieciach komputerowych oraz w sieciach kablowych. Kable koncentryczne dzielimy wg ich impedancji falowej:
Światłowód
składa się z cienkiego włókna szklanego, które przenosi informację w postaci światła w zakresie widma światła widzialnego i poniżej. W konstrukcji kabla światłowodowego można wyróżnić takie elementy, jak:
powłoka pierwotna, nakładana podczas procesu produkcyjnego, przekrój stały, około 250 μm
żel ochronny, włókno aramidowe, chroniące światłowód przed uszkodzeniem
powłoka wtórna, obejmująca powłokę pierwotną oraz opcjonalnie żel ochronny, w jednej z form: tuba, rozeta lub taśma
dielektryczny element wytrzymałościowy
żel uszczelniający
pancerz kabla (taśmy, druty stalowe)
pokrycie zewnętrzne
Zalety światłowodu w stosunku do kabli miedzianych:
odporność na zakłócenia RFI (Radio Frequency Interference) oraz EMI (ElectroMagnetic Interference)
ograniczenie w zgięciu kabla (zbyt mały promień zgięcia może doprowadzić do złamania się włókna)
trudność w łączeniu światłowodów
Koszt stosowania światłowodu jest kompromisem pomiędzy przepustowością i ceną. Gdy potrzebujemy większej przepustowości bardziej opłacalnym wyborem jest światłowód, natomiast przy niższym zapotrzebowaniu na przepustowość tańsze jest medium miedziane.
Największą prędkość transmisji sygnału za pomocą światłowodu uzyskała firma HUAWEI wdrażając system nazwany 400G, w którym prędkość transmisji danych dochodzi do 20 Tbit/s, a zasięg tego medium to 1000 km[1].
Kable energetyczne oferują najsłabszej jakości transmisję danych. Jest to spowodowane brakiem ochrony przed szumami zakłócającymi, które pochodzą z innych źródeł niż nadajnik. Z tego względu te media nie nadają się do transmisji danych na większe odległości. Teoretyczna maksymalna przepustowość tego medium wynosi 200 Mbit/s.
Poniższa tabela zawiera porównanie użytecznego pasma mediów przewodowych:
Medium transmisyjne
Pasmo
Kabel energetyczny
0–5 MHz
Skrętka
0–100 MHz
Kabel koncentryczny
0–600 MHz
Światłowód
0–1 GHz
Media bezprzewodowe
Fale elektromagnetycznew zakresie podczerwieni IR (InfraRed) są stosowane na otwartym terenie, bądź wewnątrz budynków. Jako źródła promieniowania fal elektromagnetycznych wykorzystuje się diody elektroluminescencyjne LED (Light Emitting Diode) lub diody laserowe. Przy używaniu łączy bezprzewodowych w podczerwieni nie jest wymagane uzyskiwanie licencji na ich stosowanie w przeciwieństwie do fal radiowych. Największym ograniczeniem tego medium transmisyjnego jest niewielki zasięg wynoszący do kilkudziesięciu metrów.
Fale elektromagnetyczne w zakresach fal radiowych do transmisji wymagają planowania przydziału częstotliwości, z uwzględnieniem maksymalnej dopuszczalnej mocy nadajników, rodzaju modulacji oraz innych zaleceń Międzynarodowej Unii Telekomunikacji (ITU). Obecnie najpopularniejszymi częstotliwościami używanymi do transmisji bezprzewodowej są 2,4 GHz i wyższe (zakres mikrofali). Odległości na jakich stosuje się fale radiowe wynoszą do kilkudziesięciu kilometrów przy zastosowaniu specjalnych anten nadawczo-odbiorczych.
Poniższa tabela przedstawia podział fal ze względu na ich długość oraz częstotliwość:
Zakres fal
Długość fali
Częstotliwość
Fale bardzo długie
> 20 km
< 15 kHz
Fale długie
20–3 km
15–100 kHz
Fale średnie
3000–200 m
100–1500 kHz
Fale pośrednie
200–100 m
1,5–3 MHz
Fale krótkie
100–10 m
3–30 MHz
Fale ultrakrótkie
10–1 m
30–300 MHz
Mikrofale
< 1 m
> 300 MHz
Zalety medium bezprzewodowego:
mogą przenieść duże ilości danych przy odpowiednio wysokich częstotliwościach pracy
niski koszt instalacji anten nadawczych (nie zajmują dużych powierzchni)
dla dużych częstotliwości (krótkich fal) wystarczają małe anteny
Wady medium bezprzewodowego:
tłumienie i dyfrakcja sygnału powodowane przez różne przedmioty znajdujące się na drodze fali niosącej sygnał (np. ptaki) oraz warunki atmosferyczne (np. deszcz, śnieg, mgła)
odbicie sygnału od płaskich powierzchni (np. woda, metal)
każdy może „podsłuchiwać” transmisję sygnału.
Niekorzystne zjawiska występujące w mediach transmisyjnych
Do niepożądanych zjawisk występujących w mediach transmisyjnych należą:
Protokoły sterujące dostępem do medium fizycznego (transmisyjnego) należą do podwarstwy MAC (Medium Access Control) warstwy łącza danych w modelu ISO/OSI.
Użycie odpowiedniego medium oraz protokołu dostępu do medium jest determinowane przez standard w jakim sieć została stworzona. Metody dostępu do medium podwarstwy MAC oraz warstwę fizyczną modelu ISO/OSI opisują następujące standardy IEEE: