The Trouble with Happiness
|
Read other articles:
Logo Landsverk Landsverk (AB Landsverk) adalah industri berat Swedia yang memproduksi peralatan militer seperti tank, perusak tank, SPAAG, mobil lapis baja, kendaraan off-road beroda dan beroda rantai dan peralatan sipil seperti gerbong, derek pelabuhan dan mesin pertanian. Perusahaan ini didirikan pada tahun 1872 sebagai Firman Petterson & Ohlsen. Landsverk terletak di Landskrona, Swedia. Sejarah Awal mula Tampilan atas Landsverk M38 Pada akhir 1920 perusahaan ini berada di ambang kebang...
Haruna Iikubo飯窪春菜Informasi latar belakangNama lainHarunanLahir7 November 1994 (umur 29)Asal Tokyo, JepangGenreJ-popPekerjaanPenyanyi, Aktris, ModelTahun aktif2009–sekarangLabelZetimaArtis terkaitMorning Musume (2011–2018)Situs webjust-pro.jp Haruna Iikubo (飯窪 春菜code: ja is deprecated , Iikubo Haruna, lahir 7 November 1994)[1] adalah aktris, model dan mantan penyanyi pop. Dia adalah mantan anggota generasi kesepuluh kelompok Morning Musume[1]. Biografi ...
Часть серии статей о Холокосте Идеология и политика Расовая гигиена · Расовый антисемитизм · Нацистская расовая политика · Нюрнбергские расовые законы Шоа Лагеря смерти Белжец · Дахау · Майданек · Малый Тростенец · Маутхаузен ·&...
Airport in Oman Salalah International AirportIATA: SLLICAO: OOSASummaryAirport typePublicOwnerGovernmentOperatorOAMCServesSalalah, OmanLocationAr Rubat Street (13.9 km from Salalah City)Focus city for Oman Air Salam Air Elevation AMSL73 ft / 22 mCoordinates17°02′20″N 54°05′32″E / 17.03889°N 54.09222°E / 17.03889; 54.09222Websitesalalahairport.co.omMapSLLLocation of airport in OmanRunways Direction Length Surface m ft 07/25 4,000 13,123 Asphal...
Bagian dari seriIslam Rukun Iman Keesaan Allah Malaikat Kitab-kitab Allah Nabi dan Rasul Allah Hari Kiamat Qada dan Qadar Rukun Islam Syahadat Salat Zakat Puasa Haji Sumber hukum Islam al-Qur'an Sunnah (Hadis, Sirah) Tafsir Akidah Fikih Syariat Sejarah Garis waktu Muhammad Ahlulbait Sahabat Nabi Khulafaur Rasyidin Khalifah Imamah Ilmu pengetahuan Islam abad pertengahan Penyebaran Islam Penerus Muhammad Budaya dan masyarakat Akademik Akhlak Anak-anak Dakwah Demografi Ekonomi Feminisme Filsafat...
Bukit SundiKecamatanHamparan Persawahan di Nagari Kinari Bukit SundiNegara IndonesiaProvinsiSumatera BaratKabupatenSolokPemerintahan • Camat-Populasi • Total- jiwaKode Kemendagri13.02.08 Kode BPS1303090 Luas- km²Nagari/kelurahan5 Bukit Sundi (ditulis juga sebagai Bukik Sundi) adalah sebuah kecamatan di Kabupaten Solok, Sumatera Barat, Indonesia. Kecamatan ini berjarak sekitar 33 kilometer berkendara dari ibukota kabupaten Solok ke arah utara atau 8 kilometer teng...
Economic union of countries in Eurasia Eurasian Economic Union Armenian:Եվրասիական տնտեսական միությունBelarusian:Еўразійскі эканамічны саюзKazakh:Eurazialyq Ekonomikalyq OdaqKyrgyz:Евразиялык экономикалык биримдикRussian:Евразийский экономический союз Flag Coat of arms Member states Territories occupied by Russia[1]Administrative centersMoscow, Russia(Co...
Stasiun Binjai S06 Stasiun Binjai.LokasiJalan Ikan PausTanah Tinggi, Binjai Timur, Binjai, Sumatera Utara 20735IndonesiaKoordinat3°36′35″N 98°29′52″E / 3.609612°N 98.4978014°E / 3.609612; 98.4978014Koordinat: 3°36′35″N 98°29′52″E / 3.609612°N 98.4978014°E / 3.609612; 98.4978014Ketinggian+25,30 mOperator KAI Bandara Letak km 20+889 lintas Medan—Binjai—Kuala km 0+000 lintas Binjai—Pangkalan Brandan[1] Jumlah p...
مثال للدورة الكيميائية ، تمثيل تخطيطي لدورة النيتروجين على الأرض. تؤدي هذه العملية إلى إعادة التدوير المستمر لغاز النيتروجين في المحيط. تصف الدورة الكيميائية أنظمة التدوير المتكرر للمواد الكيميائية بين المركبات والحالات والمواد الأخرى، والعودة إلى حالتها الأصلية، والت�...
Pour un article plus général, voir Tour d'Italie 2021. 11e étape du Tour d'Italie 2021 GénéralitésCourse11e étape، Tour d'Italie 2021Type Étape vallonnéeDate19 mai 2021Distance162 kmPays ItalieLieu de départPérouseLieu d'arrivéeMontalcinoPartants171Arrivants170Vitesse moyenne40,179 km/hDénivelé2 300 mRésultats de l’étape1er Mauro Schmid4 h 01 min 55 s(Qhubeka Assos)2e Alessandro Covi+ 1 s3e Harm Vanhoucke+ 26 sClassement général à l’issue de l’étape Egan Berna...
Macedonian-Albanian singer and songwriter (born 1984) Adrian GaxhaGaxha at the Eurovision Song Contest 2008Background informationBorn (1984-02-13) 13 February 1984 (age 40)Skopje, SR Macedonia, SFR YugoslaviaOccupation(s)Singer, songwriter, producer, dancer, entrepreneurYears active2001–presentLabelsBrick RecordsMusical artist Adrian Gaxha (Albanian: [adɾiˈan ˈgadʒa], Macedonian: Адријан Гаџа; born 13 February 1984) is a Macedonian-Albanian singer, songwriter, pr...
Species of flowering plant Prunus jacquemontii Conservation status Data Deficient (IUCN 3.1)[1] Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Eudicots Clade: Rosids Order: Rosales Family: Rosaceae Genus: Prunus Subgenus: Prunus subg. Prunus Section: Prunus sect. Microcerasus Species: P. jacquemontii Binomial name Prunus jacquemontiiHook. f.[2] Prunus jacquemontii, sometimes called Afghan cherry, Afghan bush cherry, Afghan ...
János Áder Presiden HungariaMasa jabatan10 Mei 2012 – 9 Mei 2022Perdana MenteriViktor OrbánPendahuluLászló Kövér (Pejabat)PenggantiKatalin NovákKetua Dewan Nasional HungariaMasa jabatan18 Juni 1998 – 15 Mei 2002PendahuluZoltán GálPenggantiKatalin Szili Informasi pribadiLahir9 Mei 1959 (umur 64)[1]Csorna, HungariaPartai politikFidesz (Aliansi Demokrat Muda)Suami/istriAnita Herczegh[2]Alma materUniversitas Eötvös LorándProfesiPengacaraSunt...
密西西比州 哥伦布城市綽號:Possum Town哥伦布位于密西西比州的位置坐标:33°30′06″N 88°24′54″W / 33.501666666667°N 88.415°W / 33.501666666667; -88.415国家 美國州密西西比州县朗兹县始建于1821年政府 • 市长罗伯特·史密斯 (民主党)面积 • 总计22.3 平方英里(57.8 平方公里) • 陸地21.4 平方英里(55.5 平方公里) • ...
Protected area in Western AustraliaLakes Argyle and Kununurra Ramsar SiteWestern AustraliaView of Lake Argyle from space, looking south-east, with the Ord River valley and Lake Kununurra at lower leftLakes Argyle and Kununurra Ramsar SiteLocation in Western AustraliaCoordinates16°19′S 128°44′E / 16.317°S 128.733°E / -16.317; 128.733Established7 June 1990[1]Area1,500 km2 (579.2 sq mi)[1]Footnotes Ramsar WetlandOfficial nameLakes A...
Politics of China Leadership Leadership generations Succession of power Hu–Wen Administration (2002–2012) Xi–Li Administration (2012–2017) Xi Administration (since 2017) 4th Leadership Core: Xi Jinping 20th Party Politburo: Xi Jinping 14th State Council: Li Qiang Current state leaders Current provincial leaders National leaders Orders of precedence Paramount leader: Xi Jinping First lady: Peng Liyuan Communist Party leader: Xi Jinping State representative: Xi Jinping Head of ...
Philosophical movementThe four principal German idealists, clockwise from Immanuel Kant in the upper left: J.G. Fichte, G.W.F. Hegel, F.W.J. Schelling German idealism is a philosophical movement that emerged in Germany in the late 18th and early 19th centuries. It developed out of the work of Immanuel Kant in the 1780s and 1790s,[1] and was closely linked both with Romanticism and the revolutionary politics of the Enlightenment. The period of German idealism after Kant is also known a...
W. A. G. Payment SolutionsHead Office in PragueCompany typePublic limited companyTraded asLSE: WPSIndustryFinancial ServicesFounded1995; 29 years ago (1995)FounderMartin VohánkaHeadquartersPrague, Czech RepublicKey peoplePaul Manduca (chairman)Martin Vohánka (CEO)Revenue €2,088.1 million (2023)[1]Operating income €(27.7) million (2023)[1]Net income €(44.0) million (2023)[1]Total assets €1,144.3 million (2023)[1&...
Tullio Levi Civita (1930 circa) Tullio Levi-Civita[1] (Padova, 29 marzo 1873 – Roma, 29 dicembre 1941) è stato un matematico e fisico italiano. È stato un grande studioso della matematica pura, e le sue intuizioni geometriche erano particolarmente forti: egli le utilizzò per risolvere un gran numero di problemi di matematica applicata. Dotato di grande versatilità, poteva spaziare in tutti i campi della matematica, affrontando prevalentemente i problemi caratteristici degli indi...
Dieser Artikel behandelt den topologischen Begriff Homotopie. Für die daraus entstandene Begriffsbildung der homologischen Algebra siehe Homotopie (homologische Algebra). Zu homotopen Gruppen in der Chemie siehe Topizität. Eine Homotopie, die eine Kaffeetasse in einen Donut (einen Volltorus) überführt. In der Topologie ist eine Homotopie (von griechisch ὁμός homos ‚gleich‘ und τόπος tópos ‚Ort‘, ‚Platz‘) eine stetige Deformation zwischen zwei Abbildungen von einem ...