T-toets

Een t-toets is een parametrische statistische toets die onder andere gebruikt kan worden om na te gaan of het (populatie)gemiddelde van een normaal verdeelde grootheid afwijkt van een bepaalde waarde, dan wel of er een verschil is tussen de gemiddelden van twee groepen in de populatie. Met behulp van een t-toets kan men dan een overschrijdingskans of een betrouwbaarheidsinterval bepalen.

Ontstaansgeschiedenis

De t-toets (en de bijbehorende t-verdeling) is ontwikkeld door William Sealy Gosset die werkte onder het pseudoniem 'Student'. De toets wordt daarom ook regelmatig als Students t-toets aangeduid. Gosset was werkzaam voor Guinness, waar hij de kwaliteit van het gebrouwen bier in de gaten hield. Hij publiceerde zijn resultaten in 1908 in het statistische tijdschrift Biometrika. Zijn werkgever eiste dat hij dat onder een pseudoniem deed, omdat het gebruik van statistische methoden als 'bedrijfsgeheim' gezien werd.

Basisidee

Het basisidee van de t-toets is het volgende: om na te gaan of van een normale verdeling met standaardafwijking de verwachtingswaarde een bepaalde waarde heeft, neemt men een steekproef van omvang uit die verdeling en berekent men het steekproefgemiddelde . Onder de nulhypothese is dit gemiddelde ook normaal verdeeld met verwachting en standaardafwijking . Het gestandaardiseerde steekproefgemiddelde

is onder de nulhypothese standaardnormaal verdeeld, zodat eenvoudig nagegaan kan worden of een steekproefuitkomst significant is.

In veel praktische gevallen is echter niet alleen de verwachtingswaarde onbekend, maar ook de standaardafwijking. Het ligt nu voor de hand om de standaardafwijking te schatten door de steekproefstandaardafwijking en te berekenen:

Het gevolg is dat de toetsingsgrootheid onder de nulhypothese niet meer standaardnormaal verdeeld, maar een t-verdeling heeft, die wat breder is dan de standaardnormale.

Gebruik

De t-toets wordt onder andere in de volgende situaties gebruikt:

  • Als toets voor de nulhypothese dat het gemiddelde van een normaal verdeelde populatie gelijk is aan een bepaalde, vooraf gespecificeerde, waarde.
  • Als toets voor de nulhypothese dat de gemiddelden van twee normaal verdeelde populaties aan elkaar gelijk zijn. Er zijn verschillende varianten voor deze toets, afhankelijk van welke veronderstellingen er gemaakt worden.
  • Als speciaal geval van de eerstgenoemde mogelijkheid bij regressieanalyse om te toetsen of de helling of het intercept gelijk is aan vooraf gespecificeerde waarde.

Voorwaarden

Een t-toets kan gebruikt worden als aan bepaalde voorwaarden is voldaan. Bij de t-toets voor één steekproef moet gelden dat de betrokken steekproef een aselecte steekproef is uit een normale verdeling, met eventueel onbekende variantie.

In het geval van twee steekproeven dienen beide steekproeven uit een normale verdeling te komen. De twee steekproeven moeten óf onafhankelijk van elkaar zijn, óf zogenaamd gepaard zijn. In het geval van twee onafhankelijke steekproeven dienen bij toepassing van de standaard t-toets de beide populaties dezelfde variantie te hebben. Wanneer beide populaties een verschillende variantie hebben, kan een aangepaste t-toets gebruikt worden. Het geval van gepaarde waarnemingen komt neer op een t-toets voor de enkele steekproef van de verschillen.

Schendingen van deze assumpties hebben gevolgen voor de robuustheid en het onderscheidend vermogen van de t-toets. Met behulp van een F-toets kan getoetst worden of de varianties in beide groepen significant van elkaar verschillen. De normaliteit van de populaties kan getoetst worden met behulp van de Kolmogorov-Smirnovtoets.

Als aan de voorwaarden van de centrale limietstelling voldaan is, kan de t-toets benaderend toegepast worden voor grote steekproeven. De voor de berekening van de toetsingsgrootheid benodigde steekproefgemiddelden zijn dan immers bij benadering normaal verdeeld.

t-toets voor één steekproef

Definitie

Zij een aselecte steekproef uit een normale verdeling met onbekende verwachting en eventueel onbekende standaardafwijking. De t-toets voor het toetsen van de nulhypothese:

,

is gebaseerd op de toetsingsgrootheid:

,

waarin het steekproefgemiddelde is en de steekproefstandaardafwijking.

Onder de nulhypothese heeft een t-verdeling met vrijheidsgraden.

De t-toets voor één groep kan men toepassen op een enkele steekproef, waarbij men toetst of het populatiegemiddelde afwijkt van een bepaalde waarde. Men past de t-toets in deze vorm ook toe op de verschilscores van twee afhankelijke groepen, als deze verschillen een aselecte steekproef vormen die voldoet aan de genoemde voorwaarden.

Voorbeeld 1

Zit er wel gemiddeld 250 g margarine in een kuipje zoals de fabrikant beweert? Om dat na te gaan wordt een steekproef van kuipjes genomen en wordt hun inhoud gewogen. Als steekproefgemiddelde wordt g gevonden, en als standaardafwijking g. Er moet getoetst worden op een significantieniveau van 5%. Veronderstellende dat de inhoud van de kuipjes normaal verdeeld is met verwachting en standaardafwijking , kan getoetst worden:

tegen

De toetsingsgrootheid T is dus:

Uit de steekproef volgt voor een waarde:

De nulhypothese wordt verworpen voor te kleine waarden van . Om na te gaan of de gevonden waarde te klein is, zijn er twee benaderingen mogelijk.

De eerste methode vergelijkt met de kritieke waarde die bij het gegeven significantieniveau van 5% hoort. De nulhypothese wordt verworpen als . Nu kan zo bepaald worden opdat:

Uit de tabel van de t-verdeling kan worden afgelezen, gebruikmakend van de symmetrie:

,

zodat gevonden wordt:

Aangezien , dient de nulhypothese verworpen te worden. Er kan geconcludeerd worden dat de kuipjes systematisch te weinig margarine bevatten.

Bij de tweede methode wordt de (linker) overschrijdingskans van berekend en de nulhypothese wordt verworpen als .

Uit een tabel van de t-verdeling met vrijheidsgraden kan afgelezen worden dat kleiner is dan 5%. De nulhypothese dient dus verworpen te worden en er kan geconcludeerd worden dat de kuipjes systematisch te weinig margarine bevatten. De waarde van kan met statistische software of programma's als Office Excel berekend worden en is ongeveer 0,00072.

t-toets voor twee steekproeven

Zoals eerder gemeld, zijn er twee situaties voor de t-toets voor twee steekproeven:

  • Twee gepaarde steekproeven
  • Twee onafhankelijke steekproeven

Definitie bij gepaarde steekproeven

Laat een aselecte steekproef zijn van gepaarde waarnemingen uit een simultane verdeling met verwachtingswaarden en , zo dat de verschillen normaal verdeeld zijn. Voor het toetsen van de nulhypothese:

gebruikt men de t-toets voor de enkelvoudige steekproef van de verschillen en toetst:

Voorbeeld 2

Is een afslankproduct wel effectief zoals de fabrikant beweert? Om dat na te gaan worden proefpersonen gevolgd. Elk worden ze gewogen voor ze aan de kuur beginnen en erna. In de onderstaande tabel staan de resultaten.

proefpersoon 1 2 3 4 5 6 7 8 9 10
gewicht voor 110 85 73 91 163 88 92 75 103 115
gewicht na 99 83 75 86 141 79 96 70 91 102
verschil 11 2 –2 5 22 9 –4 5 12 13

Er is sprake van gepaarde waarnemingen. De beide gewichten van een en dezelfde proefpersoon kunnen niet als onafhankelijk worden beschouwd. Ook is het niet aannemelijk dat de gewichten voor de kuur en evenzo na de kuur uit een normale verdeling komen. Voor de verschilscores kan wel veilig aangenomen worden dat ze een aselecte steekproef uit een normale verdeling vormen. Als het middel geen effect heeft is de verwachting van de verschilscore 0. Er wordt dus getoetst:

tegen

De toetsingsgrootheid is dus:

.

Uit de steekproef volgt voor een waarde:

De nulhypothese wordt verworpen voor te grote waarden van . Om na te gaan of de gevonden waarde te groot is bepalen wordt de (rechter) overschrijdingskans van bepaald. Uit een tabel van de t-verdeling met vrijheidsgraden kan afgelezen worden dat de p-waarde van deze uitkomst kleiner is dan 1%.

Ook in dit voorbeeld wordt de nulhypothese verworpen (op 5% niveau) en wordt aangenomen aan dat het middel effectief is of dat er een placebo-effect is.

Definitie bij onafhankelijke steekproeven

Laat en twee onafhankelijke aselecte steekproeven zijn uit respectievelijk een - en een -verdeling met onbekende verwachtingswaarden en onbekende maar gelijke varianties. De t-toets voor het toetsen van de nulhypothese:

is een toets gebaseerd op de toetsingsgrootheid:

,

waarin en de steekproefgemiddelden zijn en de zgn. gepoolde variantie is, gegeven door:

,

die het gewogen gemiddelde is van de beide afzonderlijke steekproefvarianties en .

Onder de nulhypothese heeft een t-verdeling met vrijheidsgraden. Afhankelijk van het gekozen alternatief verwerpt men de nulhypothese eenzijdig dan wel tweezijdig.

Er is bij deze definitie aangenomen dat beide populatievarianties aan elkaar gelijk zijn. Wanneer dit niet het geval is, moet er een aangepaste t-toets uitgevoerd worden.

Voorbeeld 3

Zijn vrouwen van 40 jaar gemiddeld zwaarder dan vrouwen van 30 jaar? Om dat na te gaan wordt een aselecte steekproef genomen van vrouwen van 30 en een aselecte steekproef van vrouwen van 40, onafhankelijk van de eerste steekproef. Elke vrouw wordt gewogen. In de onderstaande tabel staan de resultaten.

gewicht in kg
van 30-jarigen 77 65 73 58 63 49 51 82 103 69
van 40-jarigen 102 73 56 55 83 72 88 70 81 85 44 71 62 78 75

Er is sprake van twee onafhankelijk steekproeven. De beide gewichten die in de tabel boven elkaar staan, hebben niets met elkaar te maken. Er wordt aangenomen dat beide steekproeven afkomstig zijn uit normale verdelingen met gelijke varianties, en verwachtingswaarden respectievelijk en . Er wordt getoetst:

tegen

De toetsingsgrootheid is dus:

Uit de steekproef volgt:

dus

Voor wordt dus de volgende waarde gevonden:

De nulhypothese wordt verworpen voor te kleine waarden van . Om na te gaan of de gevonden waarde te klein is, wordt de (linker) overschrijdingskans van bepaald. Uit een tabel van de t-verdeling met vrijheidsgraden kan de p-waarde van deze uitkomst afgelezen worden.

Deze overschrijdingskans is te groot om reden te geven tot verwerping van de nulhypothese. Weliswaar waren de vrouwen van 40 in de steekproef gemiddeld 4 kg zwaarder dan de vrouwen van 30, maar dit verschil is niet significant gezien de spreiding binnen de groepen.

Software

De t-toets is een van de meest gebruikte toetsen in de statistiek, en zit daarom in de meeste statistische en data-verwerkingsprogramma's. Zo kan men in de statistische programmeertaal R de t-toets uitvoeren met behulp van de functie t.test. In Python is de t-toets beschikbaar in de SciPy bibliotheek. In de rekenbladen van Microsoft Excel en LibreOffice Calc is er de functie ttoets resp. T.TOETS of "T.TEST". In MATLAB wordt gebruikgemaakt van het commando ttest voor de t-toets en ttest2 voor twee onafhankelijke steekproeven. Een veelgebruikt programma voor dergelijke statistische toetsen is SPSS.

Read other articles:

Scott W. Hahn (lahir 28 Oktober 1957) adalah seorang apologet Kristen, profesor, penulis kontemporer, dan teolog awam[1] Katolik dari Amerika Serikat. Hahn pernah melayani sebagai seorang pendeta Presbiterian dan kemudian berpindah keyakinan ke iman Katolik. Karya-karya tulis Hahn yang populer misalnya Rome Sweet Home dan The Lamb's Supper: The Mass as Heaven on Earth. Pengajaran-pengajarannya dimuat dalam sejumlah distribusi audio melalui Lighthouse Catholic Media. Hahn dikenal kare...

 

Pour les articles homonymes, voir Carpenter. Edward CarpenterBiographieNaissance 29 août 1844HoveDécès 28 juin 1929 (à 84 ans)SurreySépulture Mount Cemetery (en)Nationalité britanniqueFormation Trinity HallLycée HocheActivités Poète, philosophe, écrivainAutres informationsParti politique Parti travaillisteMouvement Socialisme libertaireSignatureVue de la sépulture.modifier - modifier le code - modifier Wikidata Edward Carpenter, né le 29 août 1844 à Hove et mort le 28 juin...

 

Questa voce o sezione sull'argomento politici cinesi non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Zhang ChunqiaoZhang Chunqiao alla fondazione del Comitato rivoluzionario di Pechino il 20 aprile 1967 Vice-Primo ministro del Consiglio di Stato della Repubblica Popolare CineseDurata mandato17 gennaio 1975 –6 ottobre 1976 Capo del governo...

2010 American parody film The 41-Year-Old Virgin Who Knocked Up Sarah Marshall and Felt Superbad About ItDirected byCraig MossWritten byCraig MossProduced byJim BusfieldCraig MossAsh R. ShahStarringBryan CallenMircea MonroeNoureen DeWulfStephen Kramer GlickmanAustin Michael ScottCinematographyAndrew StrahornEdited byMichel AllerMusic byTodd HabermanProductioncompanySilver NitrateDistributed by20th Century Fox Home EntertainmentRelease date June 8, 2010 (2010-06-08) Running tim...

 

Sanguèze La Sanguèze sous le pont romain de Mouzillon. Caractéristiques Longueur 44 km [1] Bassin 162 km2 [1] Bassin collecteur Loire Régime Pluvial océanique Cours Source Mauges · Localisation La Renaudière, Maine-et-Loire, France · Altitude 47 m · Coordonnées 47° 08′ 11″ N, 1° 04′ 46″ O Confluence Sèvre Nantaise · Localisation Le Pallet, Loire-Atlantique, France · Altitude 9 m · Coordonnées 47° 07′ 47�...

 

Sporting event delegationNetherlands at the1952 Winter OlympicsFlag of the NetherlandsIOC codeNEDNOCDutch Olympic Committee*Dutch Sports FederationWebsitewww.nocnsf.nl (in Dutch)in OsloCompetitors11 (9 men, 2 women) in 3 sportsFlag bearerWim van der Voort (speed skating)MedalsRanked 9th Gold 0 Silver 3 Bronze 0 Total 3 Winter Olympics appearances (overview)19281932193619481952195619601964196819721976198019841988199219941998200220062010201420182022 Athletes from the Netherlands compe...

Super Bowl XXXVIII halftime showPart ofSuper Bowl XXXVIIIDateFebruary 1, 2004LocationHouston, TexasVenueReliant StadiumHeadlinerJanet Jackson, Justin Timberlake, P. Diddy, Nelly, Kid Rock, Jessica SimpsonSpecial guestsSpirit of Houston marching band, Ocean of Soul marching bandSponsorAOL TopSpeedProducerMTVSuper Bowl halftime show chronology XXXVII(2003) XXXVIII(2004) XXXIX(2005) The Super Bowl XXXVIII halftime show, known through corporate sponsorship as the Super Bowl XXXVIII AOL TopSpeed ...

 

Questa voce sull'argomento hockeisti su ghiaccio statunitensi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Jake Gardiner Nazionalità  Stati Uniti Altezza 188 cm Peso 91 kg Hockey su ghiaccio Ruolo Difensore Palmarès Competizione Ori Argenti Bronzi Mondiali 0 0 1 Vedi maggiori dettagli   Modifica dati su Wikidata · Manuale Jake William Gardiner (Minneapolis, 4 luglio 1990) è un hockeista su ghiaccio statunitense. Indice 1 Palmarè...

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Kawasaki Ninja ZX-RR – berita · surat kabar · buku · cendekiawan · JSTOR Kawasaki Ninja ZX-RRPabrikanKawasakiProduksi2002–2009PendahuluKawasaki KR500TipeMotoGPMesin798cc empat tak inline-four DOHC (200...

The Indian Super League is the top tier of professional football in India. The league was formed in 2014 as a tournament until it was recognised as one of the first division leagues in 2017 with the existing I-League, later replacing it to become the only top division league since 2022. To date, there have been 79 head coaches (including interim head coaches) in charge of the 14 clubs that have played in the league. Antonio López Habas has managed the most number of matches in the league, a...

 

  هذه المقالة عن المادة في علم الفيزياء. لالمادة من جوانب اخرى، طالع مادة (توضيح). لهنا، طالع مادة (توضيح). مادةمعلومات عامةصنف فرعي من physical substance (en) جزء من الكون المرصود ممثلة بـ كتلةكثافةدرجة حرارة لديه جزء أو أجزاء quark or lepton (en) [1] النقيض non-material physical substance (en) تعديل - ت...

 

German federal agency Logo The Bundesagentur für Arbeit (BA) ('Federal Employment Agency') is a German federal agency in the area of responsibility of the Federal Ministry for Labour and Social Affairs and has its headquarters in Nuremberg. Its current director is Andrea Nahles.[1] The BA manages job centres across Germany and administers unemployment benefits. References ^ Öchsner. Nahles übernimmt Bundesagentur für Arbeit. tagesschau.de (in German). Retrieved 1 August 2022. Exte...

1975 studio album by HeartDreamboat AnnieStudio album by HeartReleasedSeptember 1975RecordedJuly–August 1975StudioCan-Base (Vancouver)GenreHard rock[1]arena rock[2]folk rockLength40:02LabelMushroomProducerMike FlickerHeart chronology Dreamboat Annie(1975) Magazine(1977) Singles from Dreamboat Annie How Deep It GoesReleased: April 1975[3] Magic ManReleased: June 1975 Crazy on YouReleased: March 1976[4] Dreamboat AnnieReleased: November 1976[5]...

 

UK women's magazine BestEditor-in-chiefSiobhan WykesCategoriesWomen's magazineFrequencyWeeklyPublisherHearst MagazinesFounded1987CountryUnited KingdomBased inLondonLanguageEnglishWebsiteOfficial website Best is a UK women's magazine printed weekly by Hearst magazines.[1] The magazine is headquartered in London.[2] History and profile Best was established in 1987.[2] The target audience of the magazine is working-class women age between 44 and 60.[3] On 8 August...

 

Renato Azzini con la maglia del Padova Con il termine caso Azzini, o caso Atalanta,[1] si intende la combine della partita di Serie A Padova-Atalanta (0-3) del 30 marzo 1958[2], messa a punto dal calciatore patavino Renato Azzini, dall'ex portiere Giuseppe Casari e dal faccendiere Eugenio Gaggiotti, vicenda che portò alla squalifica di due anni di Azzini e alla retrocessione dell'Atalanta in Serie B. Indice 1 Antefatti 2 I fatti 3 Il processo 4 Sentenze 5 Note 6 Bibliografia ...

1886 international assembly and treaty For other uses, see Berne Convention (disambiguation). Berne ConventionBerne Convention for theProtection of Literary and Artistic Works  Map of parties to the ConventionSigned9 September 1886LocationBerne, SwitzerlandEffective5 December 1887Condition3 months after exchange of ratificationsParties181DepositaryDirector General of the World Intellectual Property OrganizationLanguagesFrench (prevailing in case of differences in interpretation) and...

 

Almamy TouréNazionalità Mali Francia (2019-2023) Altezza182 cm Peso73 kg Calcio RuoloDifensore Squadra Kaiserslautern CarrieraGiovanili 2004 ES Stains2005-2010 FC Bourget2010-2014 Monaco Squadre di club1 2014-2015 Monaco 245 (1)2015-2019 Monaco54 (5)2019-2023 Eintracht Francoforte60 (2)2023- Kaiserslautern7 (1) Nazionale 2019 Francia U-212 (0)2023- Mali1 (0) 1 I due numeri indicano le presenze e le reti segnate, per le sole partite di campionato.Il si...

 

В Википедии есть статьи о других людях с такой фамилией, см. Бычков. Афанасий Фёдорович Бычков Портрет работы А.Ф. Першакова,не ранее 1896 г. Дата рождения 15 (27) декабря 1818(1818-12-27) Место рождения Фридрихсгам, Выборгская губерния, Великое княжество Финляндское Дата смерти ...

American online language-learning service Mango LanguagesFounded2007FounderJason Teshuba, Mike Teshuba, Ryan Whalen and Mike GoulasHeadquartersFarmington Hills, MichiganWebsitewww.mangolanguages.com Mango Languages is an American online language-learning website and mobile app based in Farmington Hills, Michigan, for academic institutions, libraries, corporations, government agencies, and individuals.[1][2][3] A Mango membership can be free at local libraries,[4 ...

 

Tutte graphTutte graphNamed afterW. T. TutteVertices46Edges69Radius5Diameter8Girth4Automorphisms3 (Z/3Z)Chromatic number3Chromatic index3PropertiesCubicPlanarPolyhedralTable of graphs and parameters In the mathematical field of graph theory, the Tutte graph is a 3-regular graph with 46 vertices and 69 edges named after W. T. Tutte.[1] It has chromatic number 3, chromatic index 3, girth 4 and diameter 8. The Tutte graph is a cubic polyhedral graph, but is non-hamiltonian. Therefore, it...