Het onderwerp, dat aanvankelijk bekendstond als ideaaltheorie, begon met het werk van Richard Dedekind over idealen. Het werk van Dedekind was op zijn beurt weer gebaseerd op eerder werk van Ernst Kummer en Leopold Kronecker. Later introduceerde David Hilbert de naam ring met als doel het oudere getallenring te generaliseren. Hilbert introduceerde een meer abstracte aanpak ter vervanging van de meer concrete en rekenkundig georiënteerde methoden uit de functietheorie en de klassieke invariantentheorie. Op zijn beurt heeft Hilbert Emmy Noether sterk beïnvloed, aan wie wij heden ten dage een groot deel van de abstracte en axiomatische benadering van het onderwerp te danken hebben. Een andere belangrijke mijlpaal was het werk van Hilberts student Emanuel Lasker, die het begrip hoofdideaal heeft geïntroduceerd en die tevens de eerste versie van de stelling van Lasker-Noether bewees.
Veel van de moderne ontwikkeling in de commutatieve algebra benadrukken modulen. Zowel idealen van een ring als -algebra's zijn speciale gevallen van -modulen, zodat moduletheorie zowel de ideaaltheorie als de theorie van de ringuitbreidingen bevat. Hoewel de commutatieve algebra al doorschemerde in het werk van Kronecker, wordt de moderne benadering om binnen de commutatieve algebra gebruik te maken van moduletheorie meestal aan Emmy Noether toegeschreven.
Literatuur
(en) M Atiyah en IG MacDonald. Introduction to Commutative Algebra, 1969. Massachusetts : Addison-Wesley Publishing
(en) D Eisenbud. Commutative Algebra With a View Toward Algebraic Geometry, 1999. New York : Springer-Verlag
(en) Hideyuki Matsumura. Commutative Ring Theory, 1989. vertaald door Miles Reid, Cambridge Studies in Advanced Mathematics, Cambridge University Press
(en) M Reid. Undergraduate Commutative Algebra, 1996. London Mathematical Society Student Texts, Cambridge University Press