Een isomorfe representatie is als de additieve groep . De cirkelgroep speelt een centrale rol in de pontryagin-dualiteit en in de theorie van lie-groepen. De notatie voor de cirkelgroep komt van het woord torus aangezien , het directe product van factoren , meetkundig als een -torus kan worden gezien. De cirkelgroep is dan een 1-torus.
Definitie
De cirkelgroep is gedefinieerd als het paar met:
en de vermenigvuldiging als bewerking.
De cirkelgroep is een ondergroep van , de multiplicatieve groep van alle complexe getallen behalve 0. Aangezien een abelse groep is, is ook abels.
Modulair rekenen
De cirkelgroep is in essentie een voorbeeld van het modulair rekenen, dus rekenen modulo een gegeven getal. Bij de cirkelgroep gaat het om het kunnen optellen van hoeken, als alleen hoeken tussen 0° en 360° zijn toegestaan; dus rekenen modulo 360°. Het diagram hiernaast illustreert hoe men 150° optelt bij 270°. De gewone berekening zou zijn dat 150° + 270° = 420°, maar bij de cirkelgroep vergeet men als het ware dat men de cirkel al eenmaal rondgegaan is en begint men opnieuw bij 0°, zodat het antwoord altijd in het interval van 0° tot 360° ligt. Het antwoord wordt 420° - 360° = 60°.
Hetzelfde geldt voor de cyclische groep, daarin wordt ook modulair gerekend. Het verschil is dat in de cirkelgroep continu wordt gerekend, dus met een getallenlijn, terwijl in de cyclische groep met een vast aantal getallen wordt gerekend.
De cirkel is zelfs een eendimensionale reële variëteit, waarbij vermenigvuldigen en het nemen van de inverse analytische functies zijn op de cirkel. Dit geeft de cirkelgroep de structuur van een eendimensionale lie-groep. Het is op isomorfisme na de enige eendimensionale lie-groep, die compact en samenhangd is. Bovendien is elke -dimensionale compacte, samenhangende, commutatieve lie-groep isomorf met .
Algebraïsche structuur
De cirkelgroep is een deelbare groep. De torsie-ondergroep wordt gegeven door de verzameling van alle n-de eenheidswortels voor alle en is isomorf met . De structuurstelling voor deelbare groepen zegt dat isomorf is met de directe som van met een aantal kopieën van . Het aantal kopieën van moet , de kardinaliteit van het continuüm, zijn, anders is de kardinaliteit van de directe som niet correct. Maar de directe som van kopieën van is isomorf met , aangezien een vectorruimte van dimensie over is. Dus
De volgende isomorfie geldt ook:
wat op dezelfde manier kan worden bewezen, als ook een deelbare commutatieve groep is, waarvan de torsie-ondergroep dezelfde is als de torsie-ondergroep van .