Daugdara – topologinė erdvė, kurios kiekvieno taško aplinka yra artima euklidinei erdvei[1].
Tiksliau tariant, kiekvienas n-matės daugdaros taškas turi aplinką, homeomorfiškąn-matei euklidinei erdvei. Tiesė ir apskritimas yra vienmatė daugdara, bet aštuoniukė – ne. Dvimatės daugdaros labai dažnai vadinamos paviršiais. Pastarųjų pavyzdžiai yra plokštuma, sfera, toras; visos šios trys daugdaros gali būti realios trimatės erdvės įdėtimis (angl.embedding), bet kai kurios tokiomis būti negali: Kleino butelis ir realioji projekcinė plokštuma.
Neformaliai, daugdara yra [kokia nors] erdvė, „sumodeliuota“ euklidinėje erdvėje.
Formaliai, topologinė daugdara yra antroji skaičiuojamoji Hausdorfo erdvė, lokaliai homeomorfiška euklidinei erdvei.
Nors kiekvieno daugdaros taško artimoji aplinka yra visiškai artima euklidinei erdvei, globaliu mastu taip nėra. Pavyzdžiui, visas sferos paviršius nėra euklidinė erdvė, bet atskiri jos regionai gali būti atvaizduoti euklidinėje plokštumoje (sakykime, žemėlapyje). Daugdaros kontekste tokia „projekcija“ vadinama atvaizdžiu. Kai regionas pakliūva į du gretimus atvaizdžius, gaunamas jų vaizdas nebūna visiškai identiškas, todėl reikalinga tam tikra transformacija, susiejanti tuos pačius taškus, kuri vadinama perėjimo schema (angl.transition map).
Daugdaros samprata užima svarbią vietą šiuolaikinėje geometrijoje ir matematinėje fizikoje, nes leidžia painias struktūras aprašyti sąlyginai gerai suprantamų euklidinės erdvės savybių parametrais. Daugdaros natūraliai randasi kaip sprendinių aibės, kai nagrinėjamos lygčių sistemos ir funkcijų grafai.
Istorija
Neeuklidinių erdvių tyrimų pradžia laikytinas 1733 m. paskelbtas Džiovanio Sakerio (Giovanni Girolamo Saccheri) darbas. Vėliau (jau po 100 metų) juos plėtojo Nikolajus Lobačevskis (Никола́й Ива́нович Лобаче́вский), Janošas Bojajus (János Bolyai) ir Bernhardas Rymanas. Būtent Rymanas išplėtojo paviršiaus sampratą ir apibendrino ją n-matėms erdvėms. Jis pirmas panaudojo daugdaros[2] sąvoką vokiškai – Mannigfaltigkeit, kuri vėliau buvo išversta į anglų kalbą – manifold, o prancūzų kalboje imta naudoti variété. Rymanas daugdara (Mannigfaltigkeit) pavadino aibę visų įmanomų kintamojo reikšmių, nes kintamasis, paprastai tariant, gali įgauti daug reikšmių.
Topologinei daugdarai be krašto, atvaizdis iš atviro poaibio į atvirą aibę vadinamas homeomorfizmu. Atvaizdžių aibė, dengianti visą yra vadinama atlasu.
Jei du atvaizdžiai ir persikerta kuriame nors taške, jų kompozicija apibrėžia „perėjimo“ (angl.transition) atvaizdį iš atviro poaibio į atvirą poaibį. Jei visi perėjimo atvaizdžiai yra klasės (t. y. -kartų tolygiai diferencijuojamos funkcijos), atlasas vadinamas atlasu.