중앙인민정부 주홍콩연락판공실

중앙인민정부 주홍콩연락판공실(中央人民政府駐香港聯絡辦公室)은 중화인민공화국 중국공산당홍콩에 세운 기관중에서 제일 높은 기관이다. 중국 국무원에 속해 있고, 약칭은 중련판(中聯辦)이다. 1947년에 정식 설립되었다.

주로 하는 일은 홍콩 특별행정구 정부인민해방군 주홍콩부대에 관련된 사무를 중화인민공화국의 홍콩 관련 정책인 일국양제의 방침에 따라 처리하고 있다. 중련판은 홍콩 이외의 지역인 선전, 광저우, 베이징에도 사무실을 두어 업무를 처리하고 있다. 중국 대륙에 있는 사무실들은 홍콩으로 공부하러 가는 유학생 선발등의 업무를 맡고 있다.

조직 현황

  • 판공청
  • 연구부
  • 인사부
  • 선전문체부
  • 협조부
  • 사단연락부
  • 청년공작부
  • 경제부
  • 사회공작부
  • 교육과학부
  • 대만사무부
  • 행정재무부
  • 관찰실
  • 신식자순실
  • 보안부
  • 항도공작부
  • 구룡공작부
  • 신계공작부

같이 보기

외부 링크

Read other articles:

Bagian dari Alkitab KristenPerjanjian LamaYosua 1:1 pada Kodeks Aleppo Taurat Kejadian Keluaran Imamat Bilangan Ulangan Sejarah Yosua Hakim-hakim Rut 1 Samuel 2 Samuel 1 Raja-raja 2 Raja-raja 1 Tawarikh 2 Tawarikh Ezra Nehemia Ester Puisi Ayub Mazmur Amsal Pengkhotbah Kidung Agung Kenabian Besar Yesaya Yeremia Ratapan Yehezkiel Daniel Kecil Hosea Yoël Amos Obaja Yunus Mikha Nahum Habakuk Zefanya Hagai Zakharia Maleakhi Deuterokanonika Tobit Yudit Tambahan Ester 1 Makabe 2 Makabe Kebijaksanaa...

 

Un réalisateur (au féminin : réalisatrice) est une personne qui dirige la fabrication d'une œuvre audiovisuelle, généralement pour le cinéma ou la télévision, mais aussi pour la musique enregistrée ou la fabrication d'une émission de radio (dans ce cas, on parle plus volontiers de « metteur en ondes »). Il est l'équivalent du metteur en scène de théâtre. Le réalisateur peut avoir, ou non, participé à la rédaction du scénario du film, en collaboration avec ...

 

Catholic religious congregation Institute of the Mother of Good CounselIstituto Mater Boni ConsiliiAbbreviationIMBCFormationDecember 1985TypeSedeprivationist Catholic religious congregationHeadquartersVerrua Savoia, Turin, ItalySuperior GeneralFr Francesco RicossaKey peopleFrancesco Ricossa (co-founder)Giuseppe Murro (co-founder)Geert Stuyver (current bishop)Websitesodalitium.biz (Italian)sodalitiumpianum.com(English)sodalitium.eu (French)sodalitium.cloud (Dutch) IMBC church in Ferrara, Emili...

Pour les articles homonymes, voir Prototype (homonymie). Photographie d'un prototype BMW : la BMW Nazca C2 Dans le domaine de l'industrie et plus généralement de la recherche et développement (R&D), un prototype est selon la définition de l'OCDE « un modèle original qui possède toutes les qualités techniques et toutes les caractéristiques de fonctionnement d'un nouveau produit. (...) »[1][réf. incomplète], mais il s'agit aussi parfois d'un exemplaire incom...

 

Jeruk nipis Citrus ×aurantifolia TaksonomiDivisiTracheophytaSubdivisiSpermatophytesKladAngiospermaeKladmesangiospermsKladeudicotsKladcore eudicotsKladSuperrosidaeKladrosidsKladmalvidsOrdoSapindalesFamiliRutaceaeSubfamiliAurantioideaeTribusCitreaeGenusCitrusSpesiesCitrus ×aurantifolia Swingle, 1913 lbs Jeruk nipis (Lat Citrus × aurantiifolia; hibrida jeruk C. hystrix × C. medica) merupakan jenis tumbuhan yang masuk ke dalam suku jeruk-jerukan, tersebar di Asia dan Amerika Tengah, dikenal j...

 

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

Economics term Monopoly profit is an inflated level of profit due to the monopolistic practices of an enterprise.[1] Basic classical and neoclassical theory Traditional economics state that in a competitive market, no firm can command elevated premiums for the price of goods and services as a result of sufficient competition. In contrast, insufficient competition can provide a producer with disproportionate pricing power. Withholding production to drive prices higher produces addition...

 

Ronactolol Names IUPAC name N-[4-[2-Hydroxy-3-(propan-2-ylamino)propoxy]phenyl]-4-methoxybenzamide Identifiers CAS Number 90895-85-5 Y 3D model (JSmol) Interactive image ChemSpider 59236 PubChem CID 65824 UNII PJ691WQY08 Y InChI InChI=1S/C20H26N2O4/c1-14(2)21-12-17(23)13-26-19-10-6-16(7-11-19)22-20(24)15-4-8-18(25-3)9-5-15/h4-11,14,17,21,23H,12-13H2,1-3H3,(H,22,24)Key: BPNZFFWEUGGXMC-UHFFFAOYSA-NInChI=1/C20H26N2O4/c1-14(2)21-12-17(23)13-26-19-10-6-16(7-11-19)22-20(24)15-4-8-18...

 

مبرهنة كانتور هي مبرهنة رياضية في مجال نظرية المجموعات تنسب للرياضياتي جورج كانتور.[1][2][3] بين كانتور أن كل مجموعة E, رئيسي ل E دائما أصغر قطعا من رئيسي P ( E ) {\displaystyle {\mathfrak {P}}(E)} مجموعة أجزاءE. عندما تكون E مجموعة منتهية، النتيجة منطقية لأن رئيسي E هو عدد العناصر في E �...

Equation that is satisfied for all values of the variables Not to be confused with identity element, identity function, or identity matrix. Visual proof of the Pythagorean identity: for any angle θ {\displaystyle \theta } , the point ( x , y ) = ( cos ⁡ θ , sin ⁡ θ ) {\displaystyle (x,y)=(\cos \theta ,\sin \theta )} lies on the unit circle, which satisfies the equation x 2 + y 2 = 1 {\displaystyle x^{2}+y^{2}=1} . Thus, cos 2 ⁡ θ + sin 2 Ȇ...

 

Part of the LGBT rights seriesLegal status ofsame-sex unions Marriage Andorra Argentina Australia Austria Belgium Brazil Canada Chile Colombia Costa Rica Cuba Denmark Ecuador Estonia Finland France Germany Greece Iceland Ireland Liechtenstein* Luxembourg Malta Mexico Nepal Netherlands1 New Zealand2 Norway Portugal Slovenia South Africa Spain Sweden Switzerland Taiwan United Kingdom3 United States4 Uruguay Recognized Israel5 Civil unions andregistered partnerships Bolivia Croatia Cyprus Czech...

 

There are infinitely many prime numbers This article is about the theorem on the infinitude of prime numbers. For the theorem on perfect numbers and Mersenne primes, see Euclid–Euler theorem. For the theorem on the divisibility of products by primes, see Euclid's lemma. Euclid's theorem is a fundamental statement in number theory that asserts that there are infinitely many prime numbers. It was first proven by Euclid in his work Elements. There are several proofs of the theorem. Euclid's pr...

International standard managed by the United Nations The pictogram for harmful substances of the Globally Harmonized System of Classification and Labelling of Chemicals. The Globally Harmonized System of Classification and Labelling of Chemicals (GHS) is an internationally agreed-upon standard managed by the United Nations that was set up to replace the assortment of hazardous material classification and labelling schemes previously used around the world. Core elements of the GHS include stan...

 

2013–14 concert tour by Lana Del ReyThis article is about the concert tour by Lana Del Rey. For other uses, see Paradise Tour (disambiguation). Paradise TourWorld tour by Lana Del ReyDel Rey performing for the tour during CoachellaLocationNorth America • Europe • Asia • South AmericaAssociated albumParadiseStart dateApril 3, 2013 (2013-04-03)End dateOctober 18, 2014 (2014-10-18)Legs7No. of shows54 in Europe1 in Asia34 in North America5 in South America94 ...

 

LGBT news website The topic of this article may not meet Wikipedia's notability guidelines for companies and organizations. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.Find sources: Gay Star News – news · newspapers · books...

Voce principale: Budapest. Questa lista di architetture di Budapest elenca palazzi, monumenti, chiese ed edifici della città di Budapest. Aggiorna manualmente, SPARQL, Trova immagini Questa lista è generata dai dati presenti su Wikidata ed è periodicamente aggiornata da un bot. Le modifiche effettuate all'interno della lista saranno rimosse al prossimo aggiornamento! Immagine Edificio Architetto Stile architettonico Aeroporto di Budapest-Ferihegy Albertfalva Ambasciata d'Italia a Budapest...

 

阿洛群島位置 阿洛群島是印度尼西亞的群島,位於小巽他群島的東端,由東努沙登加拉省所管轄,下分158個村落,2008年估計人口180487。 阿洛群島以東是分隔韋塔島和阿陶羅島的翁拜海峽,南面是帝汶島的西部,北臨是班達海,西面是巽他群島其餘島嶼。 这是一篇與印度尼西亚相關的小作品。您可以通过编辑或修订扩充其内容。查论编

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (أكتوبر 2023) جوش بيك معلومات شخصية اسم الولادة جوشوا مايكل بيك الميلاد 10 نوفمبر 1986 (العمر 37 سنة)مدينة نيويورك، الولايا...

One hundred years, from 1801 to 1900 For other uses, see 19th century (disambiguation). An 1835 illustration of power loom weaving, as part of the Industrial Revolution Millennium 2nd millennium Centuries 18th century 19th century 20th century Timelines 18th century 19th century 20th century State leaders 18th century 19th century 20th century Decades 1800s 1810s 1820s 1830s 1840s 1850s 1860s 1870s 1880s 1890s Categories: Births – Deaths Est...

 

2019 film by Todd Strauss-Schulson This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensure the article remains verifiable and maintains a consistent citation style. Several templates and tools are available to assist in formatting, such as reFill (documentation) and Citation bot (documentation). (August 2022) (Learn how and when to remove this message) Isn't It RomanticTheatrical release posterDirected byTodd...