기하학에서 오일러 직선(Euler直線, 영어: Euler line)은 정삼각형이 아닌 삼각형의 외심, 무게 중심, 구점원의 중심, 수심을 지나는 직선이다. 정삼각형에서는 이 네 중심이 일치하기 때문에 오일러 직선이 정의되지 않는다.
정의
삼각형의 외심, 무게 중심, 구점원의 중심 , 수심는 공선점을 이룬다. 특히 삼각형 가 정삼각형이 아닐 경우 이들을 모두 지나는 직선은 유일하게 존재한다. 이 직선을 삼각형 의 오일러 직선이라고 한다. 삼각형 가 정삼각형일 경우 이 네 점은 모두 일치하므로, 이들을 모두 지나는 직선은 무한히 많으며, 이 경우 오일러 직선은 정의되지 않는다.
나겔 직선
삼각형 의 내심, 무게 중심 , 슈피커 중심, 나겔 점은 공선점을 이룬다. 특히 삼각형 가 정삼각형이 아닐 경우 이들을 모두 지나는 직선은 유일하게 존재한다. 이 직선을 삼각형 의 나겔 직선(Nagel直線, 영어: Nagel line)이라고 한다. 삼각형 가 정삼각형일 경우 이 네 점은 모두 일치하므로, 이들을 모두 지나는 직선은 무한히 많으며, 이 경우 나겔 직선은 정의되지 않는다.
↑ 가나Honsberger, Ross (1995). 《Episodes in Nineteenth and Twentieth Century Euclidean Geometry》. New Mathematical Library (영어) 37. Washington: The Mathematical Association of America. ISBN0-88385-639-5.