PROFILPELAJAR.COM
Privacy Policy
My Blog
New Profil
Kampus
Prov. Aceh
Prov. Bali
Prov. Bangka Belitung
Prov. Banten
Prov. Bengkulu
Prov. D.I. Yogyakarta
Prov. D.K.I. Jakarta
Prov. Gorontalo
Prov. Jambi
Prov. Jawa Barat
Prov. Jawa Tengah
Prov. Jawa Timur
Prov. Kalimantan Barat
Prov. Kalimantan Selatan
Prov. Kalimantan Tengah
Prov. Kalimantan Timur
Prov. Kalimantan Utara
Prov. Kepulauan Riau
Prov. Lampung
Prov. Maluku
Prov. Maluku Utara
Prov. Nusa Tenggara Barat
Prov. Nusa Tenggara Timur
Prov. Papua
Prov. Papua Barat
Prov. Riau
Prov. Sulawesi Barat
Prov. Sulawesi Selatan
Prov. Sulawesi Tengah
Prov. Sulawesi Tenggara
Prov. Sulawesi Utara
Prov. Sumatera Barat
Prov. Sumatera Selatan
Prov. Sumatera Utara
Partner
Ensiklopedia Dunia
Artikel Digital
Literasi Digital
Jurnal Publikasi
Kumpulan Artikel
Profil Sekolah - Kampus
Dokumen 123
삼각함수 적분표
아래 목록은
삼각함수
의
부정적분
이다.
사인만 포함하는 함수의 적분
∫ ∫ -->
sin
-->
a
x
d
x
=
− − -->
1
a
cos
-->
a
x
+
C
{\displaystyle \int \sin ax\,dx=-{\frac {1}{a}}\cos ax+C}
∫ ∫ -->
sin
2
-->
a
x
d
x
=
x
2
− − -->
1
4
a
sin
-->
2
a
x
+
C
=
x
2
− − -->
1
2
a
sin
-->
a
x
cos
-->
a
x
+
C
{\displaystyle \int \sin ^{2}{ax}\,dx={\frac {x}{2}}-{\frac {1}{4a}}\sin 2ax+C={\frac {x}{2}}-{\frac {1}{2a}}\sin ax\cos ax+C}
∫ ∫ -->
sin
3
-->
a
x
d
x
=
cos
-->
3
a
x
12
a
− − -->
3
cos
-->
a
x
4
a
+
C
{\displaystyle \int \sin ^{3}{ax}\,dx={\frac {\cos 3ax}{12a}}-{\frac {3\cos ax}{4a}}+C}
∫ ∫ -->
x
sin
2
-->
a
x
d
x
=
x
2
4
− − -->
x
4
a
sin
-->
2
a
x
− − -->
1
8
a
2
cos
-->
2
a
x
+
C
{\displaystyle \int x\sin ^{2}{ax}\,dx={\frac {x^{2}}{4}}-{\frac {x}{4a}}\sin 2ax-{\frac {1}{8a^{2}}}\cos 2ax+C}
∫ ∫ -->
x
2
sin
2
-->
a
x
d
x
=
x
3
6
− − -->
(
x
2
4
a
− − -->
1
8
a
3
)
sin
-->
2
a
x
− − -->
x
4
a
2
cos
-->
2
a
x
+
C
{\displaystyle \int x^{2}\sin ^{2}{ax}\,dx={\frac {x^{3}}{6}}-\left({\frac {x^{2}}{4a}}-{\frac {1}{8a^{3}}}\right)\sin 2ax-{\frac {x}{4a^{2}}}\cos 2ax+C}
∫ ∫ -->
x
sin
-->
a
x
d
x
=
sin
-->
a
x
a
2
− − -->
x
cos
-->
a
x
a
+
C
{\displaystyle \int x\sin ax\,dx={\frac {\sin ax}{a^{2}}}-{\frac {x\cos ax}{a}}+C}
∫ ∫ -->
(
sin
-->
b
1
x
)
(
sin
-->
b
2
x
)
d
x
=
sin
-->
(
(
b
2
− − -->
b
1
)
x
)
2
(
b
2
− − -->
b
1
)
− − -->
sin
-->
(
(
b
1
+
b
2
)
x
)
2
(
b
1
+
b
2
)
+
C
(for
|
b
1
|
≠ ≠ -->
|
b
2
|
)
{\displaystyle \int (\sin b_{1}x)(\sin b_{2}x)\,dx={\frac {\sin((b_{2}-b_{1})x)}{2(b_{2}-b_{1})}}-{\frac {\sin((b_{1}+b_{2})x)}{2(b_{1}+b_{2})}}+C\qquad {\mbox{(for }}|b_{1}|\neq |b_{2}|{\mbox{)}}}
∫ ∫ -->
sin
n
-->
a
x
d
x
=
− − -->
sin
n
− − -->
1
-->
a
x
cos
-->
a
x
n
a
+
n
− − -->
1
n
∫ ∫ -->
sin
n
− − -->
2
-->
a
x
d
x
(for
n
>
0
)
{\displaystyle \int \sin ^{n}{ax}\,dx=-{\frac {\sin ^{n-1}ax\cos ax}{na}}+{\frac {n-1}{n}}\int \sin ^{n-2}ax\,dx\qquad {\mbox{(for }}n>0{\mbox{)}}}
∫ ∫ -->
d
x
sin
-->
a
x
=
− − -->
1
a
ln
-->
|
csc
-->
a
x
+
cot
-->
a
x
|
+
C
{\displaystyle \int {\frac {dx}{\sin ax}}=-{\frac {1}{a}}\ln {\left|\csc {ax}+\cot {ax}\right|}+C}
∫ ∫ -->
d
x
sin
n
-->
a
x
=
cos
-->
a
x
a
(
1
− − -->
n
)
sin
n
− − -->
1
-->
a
x
+
n
− − -->
2
n
− − -->
1
∫ ∫ -->
d
x
sin
n
− − -->
2
-->
a
x
(for
n
>
1
)
{\displaystyle \int {\frac {dx}{\sin ^{n}ax}}={\frac {\cos ax}{a(1-n)\sin ^{n-1}ax}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\sin ^{n-2}ax}}\qquad {\mbox{(for }}n>1{\mbox{)}}}
∫ ∫ -->
x
n
sin
-->
a
x
d
x
=
− − -->
x
n
a
cos
-->
a
x
+
n
a
∫ ∫ -->
x
n
− − -->
1
cos
-->
a
x
d
x
=
∑ ∑ -->
k
=
0
2
k
≤ ≤ -->
n
(
− − -->
1
)
k
+
1
x
n
− − -->
2
k
a
1
+
2
k
n
!
(
n
− − -->
2
k
)
!
cos
-->
a
x
+
∑ ∑ -->
k
=
0
2
k
+
1
≤ ≤ -->
n
(
− − -->
1
)
k
x
n
− − -->
1
− − -->
2
k
a
2
+
2
k
n
!
(
n
− − -->
2
k
− − -->
1
)
!
sin
-->
a
x
=
− − -->
∑ ∑ -->
k
=
0
n
x
n
− − -->
k
a
1
+
k
n
!
(
n
− − -->
k
)
!
cos
-->
(
a
x
+
k
π π -->
2
)
(for
n
>
0
)
{\displaystyle {\begin{aligned}\int x^{n}\sin ax\,dx&=-{\frac {x^{n}}{a}}\cos ax+{\frac {n}{a}}\int x^{n-1}\cos ax\,dx\\&=\sum _{k=0}^{2k\leq n}(-1)^{k+1}{\frac {x^{n-2k}}{a^{1+2k}}}{\frac {n!}{(n-2k)!}}\cos ax+\sum _{k=0}^{2k+1\leq n}(-1)^{k}{\frac {x^{n-1-2k}}{a^{2+2k}}}{\frac {n!}{(n-2k-1)!}}\sin ax\\&=-\sum _{k=0}^{n}{\frac {x^{n-k}}{a^{1+k}}}{\frac {n!}{(n-k)!}}\cos \left(ax+k{\frac {\pi }{2}}\right)\qquad {\mbox{(for }}n>0{\mbox{)}}\end{aligned}}}
∫ ∫ -->
sin
-->
a
x
x
d
x
=
∑ ∑ -->
n
=
0
∞ ∞ -->
(
− − -->
1
)
n
(
a
x
)
2
n
+
1
(
2
n
+
1
)
⋅ ⋅ -->
(
2
n
+
1
)
!
+
C
{\displaystyle \int {\frac {\sin ax}{x}}\,dx=\sum _{n=0}^{\infty }(-1)^{n}{\frac {(ax)^{2n+1}}{(2n+1)\cdot (2n+1)!}}+C}
∫ ∫ -->
sin
-->
a
x
x
n
d
x
=
− − -->
sin
-->
a
x
(
n
− − -->
1
)
x
n
− − -->
1
+
a
n
− − -->
1
∫ ∫ -->
cos
-->
a
x
x
n
− − -->
1
d
x
{\displaystyle \int {\frac {\sin ax}{x^{n}}}\,dx=-{\frac {\sin ax}{(n-1)x^{n-1}}}+{\frac {a}{n-1}}\int {\frac {\cos ax}{x^{n-1}}}\,dx}
∫ ∫ -->
d
x
1
± ± -->
sin
-->
a
x
=
1
a
tan
-->
(
a
x
2
∓ ∓ -->
π π -->
4
)
+
C
{\displaystyle \int {\frac {dx}{1\pm \sin ax}}={\frac {1}{a}}\tan \left({\frac {ax}{2}}\mp {\frac {\pi }{4}}\right)+C}
∫ ∫ -->
x
d
x
1
+
sin
-->
a
x
=
x
a
tan
-->
(
a
x
2
− − -->
π π -->
4
)
+
2
a
2
ln
-->
|
cos
-->
(
a
x
2
− − -->
π π -->
4
)
|
+
C
{\displaystyle \int {\frac {x\,dx}{1+\sin ax}}={\frac {x}{a}}\tan \left({\frac {ax}{2}}-{\frac {\pi }{4}}\right)+{\frac {2}{a^{2}}}\ln \left|\cos \left({\frac {ax}{2}}-{\frac {\pi }{4}}\right)\right|+C}
∫ ∫ -->
x
d
x
1
− − -->
sin
-->
a
x
=
x
a
cot
-->
(
π π -->
4
− − -->
a
x
2
)
+
2
a
2
ln
-->
|
sin
-->
(
π π -->
4
− − -->
a
x
2
)
|
+
C
{\displaystyle \int {\frac {x\,dx}{1-\sin ax}}={\frac {x}{a}}\cot \left({\frac {\pi }{4}}-{\frac {ax}{2}}\right)+{\frac {2}{a^{2}}}\ln \left|\sin \left({\frac {\pi }{4}}-{\frac {ax}{2}}\right)\right|+C}
∫ ∫ -->
sin
-->
a
x
d
x
1
± ± -->
sin
-->
a
x
=
± ± -->
x
+
1
a
tan
-->
(
π π -->
4
∓ ∓ -->
a
x
2
)
+
C
{\displaystyle \int {\frac {\sin ax\,dx}{1\pm \sin ax}}=\pm x+{\frac {1}{a}}\tan \left({\frac {\pi }{4}}\mp {\frac {ax}{2}}\right)+C}
코사인만 포함하는 함수의 적분
∫ ∫ -->
cos
-->
a
x
d
x
=
1
a
sin
-->
a
x
+
C
{\displaystyle \int \cos ax\,dx={\frac {1}{a}}\sin ax+C}
∫ ∫ -->
cos
2
-->
a
x
d
x
=
x
2
+
1
4
a
sin
-->
2
a
x
+
C
=
x
2
+
1
2
a
sin
-->
a
x
cos
-->
a
x
+
C
{\displaystyle \int \cos ^{2}{ax}\,dx={\frac {x}{2}}+{\frac {1}{4a}}\sin 2ax+C={\frac {x}{2}}+{\frac {1}{2a}}\sin ax\cos ax+C}
∫ ∫ -->
cos
n
-->
a
x
d
x
=
cos
n
− − -->
1
-->
a
x
sin
-->
a
x
n
a
+
n
− − -->
1
n
∫ ∫ -->
cos
n
− − -->
2
-->
a
x
d
x
(for
n
>
0
)
{\displaystyle \int \cos ^{n}ax\,dx={\frac {\cos ^{n-1}ax\sin ax}{na}}+{\frac {n-1}{n}}\int \cos ^{n-2}ax\,dx\qquad {\mbox{(for }}n>0{\mbox{)}}}
∫ ∫ -->
x
cos
-->
a
x
d
x
=
cos
-->
a
x
a
2
+
x
sin
-->
a
x
a
+
C
{\displaystyle \int x\cos ax\,dx={\frac {\cos ax}{a^{2}}}+{\frac {x\sin ax}{a}}+C}
∫ ∫ -->
x
2
cos
2
-->
a
x
d
x
=
x
3
6
+
(
x
2
4
a
− − -->
1
8
a
3
)
sin
-->
2
a
x
+
x
4
a
2
cos
-->
2
a
x
+
C
{\displaystyle \int x^{2}\cos ^{2}{ax}\,dx={\frac {x^{3}}{6}}+\left({\frac {x^{2}}{4a}}-{\frac {1}{8a^{3}}}\right)\sin 2ax+{\frac {x}{4a^{2}}}\cos 2ax+C}
∫ ∫ -->
x
n
cos
-->
a
x
d
x
=
x
n
sin
-->
a
x
a
− − -->
n
a
∫ ∫ -->
x
n
− − -->
1
sin
-->
a
x
d
x
=
∑ ∑ -->
k
=
0
2
k
+
1
≤ ≤ -->
n
(
− − -->
1
)
k
x
n
− − -->
2
k
− − -->
1
a
2
+
2
k
n
!
(
n
− − -->
2
k
− − -->
1
)
!
cos
-->
a
x
+
∑ ∑ -->
k
=
0
2
k
≤ ≤ -->
n
(
− − -->
1
)
k
x
n
− − -->
2
k
a
1
+
2
k
n
!
(
n
− − -->
2
k
)
!
sin
-->
a
x
=
∑ ∑ -->
k
=
0
n
(
− − -->
1
)
⌊ ⌊ -->
k
/
2
⌋ ⌋ -->
x
n
− − -->
k
a
1
+
k
n
!
(
n
− − -->
k
)
!
cos
-->
(
a
x
− − -->
(
− − -->
1
)
k
+
1
2
π π -->
2
)
=
∑ ∑ -->
k
=
0
n
x
n
− − -->
k
a
1
+
k
n
!
(
n
− − -->
k
)
!
sin
-->
(
a
x
+
k
π π -->
2
)
(for
n
>
0
)
{\displaystyle {\begin{aligned}\int x^{n}\cos ax\,dx&={\frac {x^{n}\sin ax}{a}}-{\frac {n}{a}}\int x^{n-1}\sin ax\,dx\\&=\sum _{k=0}^{2k+1\leq n}(-1)^{k}{\frac {x^{n-2k-1}}{a^{2+2k}}}{\frac {n!}{(n-2k-1)!}}\cos ax+\sum _{k=0}^{2k\leq n}(-1)^{k}{\frac {x^{n-2k}}{a^{1+2k}}}{\frac {n!}{(n-2k)!}}\sin ax\\&=\sum _{k=0}^{n}(-1)^{\lfloor k/2\rfloor }{\frac {x^{n-k}}{a^{1+k}}}{\frac {n!}{(n-k)!}}\cos \left(ax-{\frac {(-1)^{k}+1}{2}}{\frac {\pi }{2}}\right)\\&=\sum _{k=0}^{n}{\frac {x^{n-k}}{a^{1+k}}}{\frac {n!}{(n-k)!}}\sin \left(ax+k{\frac {\pi }{2}}\right)\qquad {\mbox{(for }}n>0{\mbox{)}}\end{aligned}}}
∫ ∫ -->
cos
-->
a
x
x
d
x
=
ln
-->
|
a
x
|
+
∑ ∑ -->
k
=
1
∞ ∞ -->
(
− − -->
1
)
k
(
a
x
)
2
k
2
k
⋅ ⋅ -->
(
2
k
)
!
+
C
{\displaystyle \int {\frac {\cos ax}{x}}\,dx=\ln |ax|+\sum _{k=1}^{\infty }(-1)^{k}{\frac {(ax)^{2k}}{2k\cdot (2k)!}}+C}
∫ ∫ -->
cos
-->
a
x
x
n
d
x
=
− − -->
cos
-->
a
x
(
n
− − -->
1
)
x
n
− − -->
1
− − -->
a
n
− − -->
1
∫ ∫ -->
sin
-->
a
x
x
n
− − -->
1
d
x
(for
n
≠ ≠ -->
1
)
{\displaystyle \int {\frac {\cos ax}{x^{n}}}\,dx=-{\frac {\cos ax}{(n-1)x^{n-1}}}-{\frac {a}{n-1}}\int {\frac {\sin ax}{x^{n-1}}}\,dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
∫ ∫ -->
d
x
cos
-->
a
x
=
1
a
ln
-->
|
tan
-->
(
a
x
2
+
π π -->
4
)
|
+
C
{\displaystyle \int {\frac {dx}{\cos ax}}={\frac {1}{a}}\ln \left|\tan \left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)\right|+C}
∫ ∫ -->
d
x
cos
n
-->
a
x
=
sin
-->
a
x
a
(
n
− − -->
1
)
cos
n
− − -->
1
-->
a
x
+
n
− − -->
2
n
− − -->
1
∫ ∫ -->
d
x
cos
n
− − -->
2
-->
a
x
(for
n
>
1
)
{\displaystyle \int {\frac {dx}{\cos ^{n}ax}}={\frac {\sin ax}{a(n-1)\cos ^{n-1}ax}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\cos ^{n-2}ax}}\qquad {\mbox{(for }}n>1{\mbox{)}}}
∫ ∫ -->
d
x
1
+
cos
-->
a
x
=
1
a
tan
-->
a
x
2
+
C
{\displaystyle \int {\frac {dx}{1+\cos ax}}={\frac {1}{a}}\tan {\frac {ax}{2}}+C}
∫ ∫ -->
d
x
1
− − -->
cos
-->
a
x
=
− − -->
1
a
cot
-->
a
x
2
+
C
{\displaystyle \int {\frac {dx}{1-\cos ax}}=-{\frac {1}{a}}\cot {\frac {ax}{2}}+C}
∫ ∫ -->
x
d
x
1
+
cos
-->
a
x
=
x
a
tan
-->
a
x
2
+
2
a
2
ln
-->
|
cos
-->
a
x
2
|
+
C
{\displaystyle \int {\frac {x\,dx}{1+\cos ax}}={\frac {x}{a}}\tan {\frac {ax}{2}}+{\frac {2}{a^{2}}}\ln \left|\cos {\frac {ax}{2}}\right|+C}
∫ ∫ -->
x
d
x
1
− − -->
cos
-->
a
x
=
− − -->
x
a
cot
-->
a
x
2
+
2
a
2
ln
-->
|
sin
-->
a
x
2
|
+
C
{\displaystyle \int {\frac {x\,dx}{1-\cos ax}}=-{\frac {x}{a}}\cot {\frac {ax}{2}}+{\frac {2}{a^{2}}}\ln \left|\sin {\frac {ax}{2}}\right|+C}
∫ ∫ -->
cos
-->
a
x
d
x
1
+
cos
-->
a
x
=
x
− − -->
1
a
tan
-->
a
x
2
+
C
{\displaystyle \int {\frac {\cos ax\,dx}{1+\cos ax}}=x-{\frac {1}{a}}\tan {\frac {ax}{2}}+C}
∫ ∫ -->
cos
-->
a
x
d
x
1
− − -->
cos
-->
a
x
=
− − -->
x
− − -->
1
a
cot
-->
a
x
2
+
C
{\displaystyle \int {\frac {\cos ax\,dx}{1-\cos ax}}=-x-{\frac {1}{a}}\cot {\frac {ax}{2}}+C}
∫ ∫ -->
(
cos
-->
a
1
x
)
(
cos
-->
a
2
x
)
d
x
=
sin
-->
(
(
a
2
− − -->
a
1
)
x
)
2
(
a
2
− − -->
a
1
)
+
sin
-->
(
(
a
2
+
a
1
)
x
)
2
(
a
2
+
a
1
)
+
C
(for
|
a
1
|
≠ ≠ -->
|
a
2
|
)
{\displaystyle \int (\cos a_{1}x)(\cos a_{2}x)\,dx={\frac {\sin((a_{2}-a_{1})x)}{2(a_{2}-a_{1})}}+{\frac {\sin((a_{2}+a_{1})x)}{2(a_{2}+a_{1})}}+C\qquad {\mbox{(for }}|a_{1}|\neq |a_{2}|{\mbox{)}}}
탄젠트만 포함하는 함수의 적분
∫ ∫ -->
tan
-->
a
x
d
x
=
− − -->
1
a
ln
-->
|
cos
-->
a
x
|
+
C
=
1
a
ln
-->
|
sec
-->
a
x
|
+
C
{\displaystyle \int \tan ax\,dx=-{\frac {1}{a}}\ln |\cos ax|+C={\frac {1}{a}}\ln |\sec ax|+C}
∫ ∫ -->
tan
2
-->
x
d
x
=
tan
-->
x
− − -->
x
+
C
{\displaystyle \int \tan ^{2}{x}\,dx=\tan {x}-x+C}
∫ ∫ -->
tan
n
-->
a
x
d
x
=
1
a
(
n
− − -->
1
)
tan
n
− − -->
1
-->
a
x
− − -->
∫ ∫ -->
tan
n
− − -->
2
-->
a
x
d
x
(for
n
≠ ≠ -->
1
)
{\displaystyle \int \tan ^{n}ax\,dx={\frac {1}{a(n-1)}}\tan ^{n-1}ax-\int \tan ^{n-2}ax\,dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
∫ ∫ -->
d
x
q
tan
-->
a
x
+
p
=
1
p
2
+
q
2
(
p
x
+
q
a
ln
-->
|
q
sin
-->
a
x
+
p
cos
-->
a
x
|
)
+
C
(for
p
2
+
q
2
≠ ≠ -->
0
)
{\displaystyle \int {\frac {dx}{q\tan ax+p}}={\frac {1}{p^{2}+q^{2}}}(px+{\frac {q}{a}}\ln |q\sin ax+p\cos ax|)+C\qquad {\mbox{(for }}p^{2}+q^{2}\neq 0{\mbox{)}}}
∫ ∫ -->
d
x
tan
-->
a
x
± ± -->
1
=
± ± -->
x
2
+
1
2
a
ln
-->
|
sin
-->
a
x
± ± -->
cos
-->
a
x
|
+
C
{\displaystyle \int {\frac {dx}{\tan ax\pm 1}}=\pm {\frac {x}{2}}+{\frac {1}{2a}}\ln |\sin ax\pm \cos ax|+C}
∫ ∫ -->
tan
-->
a
x
d
x
tan
-->
a
x
± ± -->
1
=
x
2
∓ ∓ -->
1
2
a
ln
-->
|
sin
-->
a
x
± ± -->
cos
-->
a
x
|
+
C
{\displaystyle \int {\frac {\tan ax\,dx}{\tan ax\pm 1}}={\frac {x}{2}}\mp {\frac {1}{2a}}\ln |\sin ax\pm \cos ax|+C}
시컨트만 포함하는 함수의 적분
∫ ∫ -->
sec
-->
a
x
d
x
=
1
a
ln
-->
|
sec
-->
a
x
+
tan
-->
a
x
|
+
C
=
1
a
ln
-->
|
tan
-->
(
a
x
2
+
π π -->
4
)
|
+
C
{\displaystyle \int \sec {ax}\,dx={\frac {1}{a}}\ln {\left|\sec {ax}+\tan {ax}\right|}+C={\frac {1}{a}}\ln {\left|\tan {\left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)}\right|}+C}
∫ ∫ -->
sec
2
-->
x
d
x
=
tan
-->
x
+
C
{\displaystyle \int \sec ^{2}{x}\,dx=\tan {x}+C}
∫ ∫ -->
sec
3
-->
x
d
x
=
1
2
sec
-->
x
tan
-->
x
+
1
2
ln
-->
|
sec
-->
x
+
tan
-->
x
|
+
C
.
{\displaystyle \int \sec ^{3}{x}\,dx={\frac {1}{2}}\sec x\tan x+{\frac {1}{2}}\ln |\sec x+\tan x|+C.}
∫ ∫ -->
sec
n
-->
a
x
d
x
=
sec
n
− − -->
2
-->
a
x
tan
-->
a
x
a
(
n
− − -->
1
)
+
n
− − -->
2
n
− − -->
1
∫ ∫ -->
sec
n
− − -->
2
-->
a
x
d
x
(for
n
≠ ≠ -->
1
)
{\displaystyle \int \sec ^{n}{ax}\,dx={\frac {\sec ^{n-2}{ax}\tan {ax}}{a(n-1)}}\,+\,{\frac {n-2}{n-1}}\int \sec ^{n-2}{ax}\,dx\qquad {\mbox{ (for }}n\neq 1{\mbox{)}}}
∫ ∫ -->
d
x
sec
-->
x
+
1
=
x
− − -->
tan
-->
x
2
+
C
{\displaystyle \int {\frac {dx}{\sec {x}+1}}=x-\tan {\frac {x}{2}}+C}
∫ ∫ -->
d
x
sec
-->
x
− − -->
1
=
− − -->
x
− − -->
cot
-->
x
2
+
C
{\displaystyle \int {\frac {dx}{\sec {x}-1}}=-x-\cot {\frac {x}{2}}+C}
코시컨트만 포함하는 함수의 적분
∫ ∫ -->
csc
-->
a
x
d
x
=
− − -->
1
a
ln
-->
|
csc
-->
a
x
+
cot
-->
a
x
|
+
C
=
1
a
ln
-->
|
csc
-->
a
x
− − -->
cot
-->
a
x
|
+
C
=
1
a
ln
-->
|
tan
-->
(
a
x
2
)
|
+
C
{\displaystyle \int \csc {ax}\,dx=-{\frac {1}{a}}\ln {\left|\csc {ax}+\cot {ax}\right|}+C={\frac {1}{a}}\ln {\left|\csc {ax}-\cot {ax}\right|}+C={\frac {1}{a}}\ln {\left|\tan {\left({\frac {ax}{2}}\right)}\right|}+C}
∫ ∫ -->
csc
2
-->
x
d
x
=
− − -->
cot
-->
x
+
C
{\displaystyle \int \csc ^{2}{x}\,dx=-\cot {x}+C}
∫ ∫ -->
csc
3
-->
x
d
x
=
− − -->
1
2
csc
-->
x
cot
-->
x
− − -->
1
2
ln
-->
|
csc
-->
x
+
cot
-->
x
|
+
C
=
− − -->
1
2
csc
-->
x
cot
-->
x
+
1
2
ln
-->
|
csc
-->
x
− − -->
cot
-->
x
|
+
C
{\displaystyle \int \csc ^{3}{x}\,dx=-{\frac {1}{2}}\csc x\cot x-{\frac {1}{2}}\ln |\csc x+\cot x|+C=-{\frac {1}{2}}\csc x\cot x+{\frac {1}{2}}\ln |\csc x-\cot x|+C}
∫ ∫ -->
csc
n
-->
a
x
d
x
=
− − -->
csc
n
− − -->
2
-->
a
x
cot
-->
a
x
a
(
n
− − -->
1
)
+
n
− − -->
2
n
− − -->
1
∫ ∫ -->
csc
n
− − -->
2
-->
a
x
d
x
(for
n
≠ ≠ -->
1
)
{\displaystyle \int \csc ^{n}{ax}\,dx=-{\frac {\csc ^{n-2}{ax}\cot {ax}}{a(n-1)}}\,+\,{\frac {n-2}{n-1}}\int \csc ^{n-2}{ax}\,dx\qquad {\mbox{ (for }}n\neq 1{\mbox{)}}}
∫ ∫ -->
d
x
csc
-->
x
+
1
=
x
− − -->
2
cot
-->
x
2
+
1
+
C
{\displaystyle \int {\frac {dx}{\csc {x}+1}}=x-{\frac {2}{\cot {\frac {x}{2}}+1}}+C}
∫ ∫ -->
d
x
csc
-->
x
− − -->
1
=
− − -->
x
+
2
cot
-->
x
2
− − -->
1
+
C
{\displaystyle \int {\frac {dx}{\csc {x}-1}}=-x+{\frac {2}{\cot {\frac {x}{2}}-1}}+C}
코탄젠트만 포함하는 함수의 적분
∫ ∫ -->
cot
-->
a
x
d
x
=
1
a
ln
-->
|
sin
-->
a
x
|
+
C
{\displaystyle \int \cot ax\,dx={\frac {1}{a}}\ln |\sin ax|+C}
∫ ∫ -->
cot
2
-->
x
d
x
=
− − -->
cot
-->
x
− − -->
x
+
C
{\displaystyle \int \cot ^{2}{x}\,dx=-\cot {x}-x+C}
∫ ∫ -->
cot
n
-->
a
x
d
x
=
− − -->
1
a
(
n
− − -->
1
)
cot
n
− − -->
1
-->
a
x
− − -->
∫ ∫ -->
cot
n
− − -->
2
-->
a
x
d
x
(for
n
≠ ≠ -->
1
)
{\displaystyle \int \cot ^{n}ax\,dx=-{\frac {1}{a(n-1)}}\cot ^{n-1}ax-\int \cot ^{n-2}ax\,dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
∫ ∫ -->
d
x
1
+
cot
-->
a
x
=
∫ ∫ -->
tan
-->
a
x
d
x
tan
-->
a
x
+
1
=
x
2
− − -->
1
2
a
ln
-->
|
sin
-->
a
x
+
cos
-->
a
x
|
+
C
{\displaystyle \int {\frac {dx}{1+\cot ax}}=\int {\frac {\tan ax\,dx}{\tan ax+1}}={\frac {x}{2}}-{\frac {1}{2a}}\ln |\sin ax+\cos ax|+C}
∫ ∫ -->
d
x
1
− − -->
cot
-->
a
x
=
∫ ∫ -->
tan
-->
a
x
d
x
tan
-->
a
x
− − -->
1
=
x
2
+
1
2
a
ln
-->
|
sin
-->
a
x
− − -->
cos
-->
a
x
|
+
C
{\displaystyle \int {\frac {dx}{1-\cot ax}}=\int {\frac {\tan ax\,dx}{\tan ax-1}}={\frac {x}{2}}+{\frac {1}{2a}}\ln |\sin ax-\cos ax|+C}
사인과 코사인을 포함하는 함수의 적분
∫ ∫ -->
d
x
cos
-->
a
x
± ± -->
sin
-->
a
x
=
1
a
2
ln
-->
|
tan
-->
(
a
x
2
± ± -->
π π -->
8
)
|
+
C
{\displaystyle \int {\frac {dx}{\cos ax\pm \sin ax}}={\frac {1}{a{\sqrt {2}}}}\ln \left|\tan \left({\frac {ax}{2}}\pm {\frac {\pi }{8}}\right)\right|+C}
∫ ∫ -->
d
x
(
cos
-->
a
x
± ± -->
sin
-->
a
x
)
2
=
1
2
a
tan
-->
(
a
x
∓ ∓ -->
π π -->
4
)
+
C
{\displaystyle \int {\frac {dx}{(\cos ax\pm \sin ax)^{2}}}={\frac {1}{2a}}\tan \left(ax\mp {\frac {\pi }{4}}\right)+C}
∫ ∫ -->
d
x
(
cos
-->
x
+
sin
-->
x
)
n
=
1
n
− − -->
1
(
sin
-->
x
− − -->
cos
-->
x
(
cos
-->
x
+
sin
-->
x
)
n
− − -->
1
− − -->
2
(
n
− − -->
2
)
∫ ∫ -->
d
x
(
cos
-->
x
+
sin
-->
x
)
n
− − -->
2
)
{\displaystyle \int {\frac {dx}{(\cos x+\sin x)^{n}}}={\frac {1}{n-1}}\left({\frac {\sin x-\cos x}{(\cos x+\sin x)^{n-1}}}-2(n-2)\int {\frac {dx}{(\cos x+\sin x)^{n-2}}}\right)}
∫ ∫ -->
cos
-->
a
x
d
x
cos
-->
a
x
+
sin
-->
a
x
=
x
2
+
1
2
a
ln
-->
|
sin
-->
a
x
+
cos
-->
a
x
|
+
C
{\displaystyle \int {\frac {\cos ax\,dx}{\cos ax+\sin ax}}={\frac {x}{2}}+{\frac {1}{2a}}\ln \left|\sin ax+\cos ax\right|+C}
∫ ∫ -->
cos
-->
a
x
d
x
cos
-->
a
x
− − -->
sin
-->
a
x
=
x
2
− − -->
1
2
a
ln
-->
|
sin
-->
a
x
− − -->
cos
-->
a
x
|
+
C
{\displaystyle \int {\frac {\cos ax\,dx}{\cos ax-\sin ax}}={\frac {x}{2}}-{\frac {1}{2a}}\ln \left|\sin ax-\cos ax\right|+C}
∫ ∫ -->
sin
-->
a
x
d
x
cos
-->
a
x
+
sin
-->
a
x
=
x
2
− − -->
1
2
a
ln
-->
|
sin
-->
a
x
+
cos
-->
a
x
|
+
C
{\displaystyle \int {\frac {\sin ax\,dx}{\cos ax+\sin ax}}={\frac {x}{2}}-{\frac {1}{2a}}\ln \left|\sin ax+\cos ax\right|+C}
∫ ∫ -->
sin
-->
a
x
d
x
cos
-->
a
x
− − -->
sin
-->
a
x
=
− − -->
x
2
− − -->
1
2
a
ln
-->
|
sin
-->
a
x
− − -->
cos
-->
a
x
|
+
C
{\displaystyle \int {\frac {\sin ax\,dx}{\cos ax-\sin ax}}=-{\frac {x}{2}}-{\frac {1}{2a}}\ln \left|\sin ax-\cos ax\right|+C}
∫ ∫ -->
cos
-->
a
x
d
x
(
sin
-->
a
x
)
(
1
+
cos
-->
a
x
)
=
− − -->
1
4
a
tan
2
-->
a
x
2
+
1
2
a
ln
-->
|
tan
-->
a
x
2
|
+
C
{\displaystyle \int {\frac {\cos ax\,dx}{(\sin ax)(1+\cos ax)}}=-{\frac {1}{4a}}\tan ^{2}{\frac {ax}{2}}+{\frac {1}{2a}}\ln \left|\tan {\frac {ax}{2}}\right|+C}
∫ ∫ -->
cos
-->
a
x
d
x
(
sin
-->
a
x
)
(
1
− − -->
cos
-->
a
x
)
=
− − -->
1
4
a
cot
2
-->
a
x
2
− − -->
1
2
a
ln
-->
|
tan
-->
a
x
2
|
+
C
{\displaystyle \int {\frac {\cos ax\,dx}{(\sin ax)(1-\cos ax)}}=-{\frac {1}{4a}}\cot ^{2}{\frac {ax}{2}}-{\frac {1}{2a}}\ln \left|\tan {\frac {ax}{2}}\right|+C}
∫ ∫ -->
sin
-->
a
x
d
x
(
cos
-->
a
x
)
(
1
+
sin
-->
a
x
)
=
1
4
a
cot
2
-->
(
a
x
2
+
π π -->
4
)
+
1
2
a
ln
-->
|
tan
-->
(
a
x
2
+
π π -->
4
)
|
+
C
{\displaystyle \int {\frac {\sin ax\,dx}{(\cos ax)(1+\sin ax)}}={\frac {1}{4a}}\cot ^{2}\left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)+{\frac {1}{2a}}\ln \left|\tan \left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)\right|+C}
∫ ∫ -->
sin
-->
a
x
d
x
(
cos
-->
a
x
)
(
1
− − -->
sin
-->
a
x
)
=
1
4
a
tan
2
-->
(
a
x
2
+
π π -->
4
)
− − -->
1
2
a
ln
-->
|
tan
-->
(
a
x
2
+
π π -->
4
)
|
+
C
{\displaystyle \int {\frac {\sin ax\,dx}{(\cos ax)(1-\sin ax)}}={\frac {1}{4a}}\tan ^{2}\left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)-{\frac {1}{2a}}\ln \left|\tan \left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)\right|+C}
∫ ∫ -->
(
sin
-->
a
x
)
(
cos
-->
a
x
)
d
x
=
1
2
a
sin
2
-->
a
x
+
C
{\displaystyle \int (\sin ax)(\cos ax)\,dx={\frac {1}{2a}}\sin ^{2}ax+C}
∫ ∫ -->
(
sin
-->
a
1
x
)
(
cos
-->
a
2
x
)
d
x
=
− − -->
cos
-->
(
(
a
1
− − -->
a
2
)
x
)
2
(
a
1
− − -->
a
2
)
− − -->
cos
-->
(
(
a
1
+
a
2
)
x
)
2
(
a
1
+
a
2
)
+
C
(for
|
a
1
|
≠ ≠ -->
|
a
2
|
)
{\displaystyle \int (\sin a_{1}x)(\cos a_{2}x)\,dx=-{\frac {\cos((a_{1}-a_{2})x)}{2(a_{1}-a_{2})}}-{\frac {\cos((a_{1}+a_{2})x)}{2(a_{1}+a_{2})}}+C\qquad {\mbox{(for }}|a_{1}|\neq |a_{2}|{\mbox{)}}}
∫ ∫ -->
(
sin
n
-->
a
x
)
(
cos
-->
a
x
)
d
x
=
1
a
(
n
+
1
)
sin
n
+
1
-->
a
x
+
C
(for
n
≠ ≠ -->
− − -->
1
)
{\displaystyle \int (\sin ^{n}ax)(\cos ax)\,dx={\frac {1}{a(n+1)}}\sin ^{n+1}ax+C\qquad {\mbox{(for }}n\neq -1{\mbox{)}}}
∫ ∫ -->
(
sin
-->
a
x
)
(
cos
n
-->
a
x
)
d
x
=
− − -->
1
a
(
n
+
1
)
cos
n
+
1
-->
a
x
+
C
(for
n
≠ ≠ -->
− − -->
1
)
{\displaystyle \int (\sin ax)(\cos ^{n}ax)\,dx=-{\frac {1}{a(n+1)}}\cos ^{n+1}ax+C\qquad {\mbox{(for }}n\neq -1{\mbox{)}}}
∫ ∫ -->
(
sin
n
-->
a
x
)
(
cos
m
-->
a
x
)
d
x
=
− − -->
(
sin
n
− − -->
1
-->
a
x
)
(
cos
m
+
1
-->
a
x
)
a
(
n
+
m
)
+
n
− − -->
1
n
+
m
∫ ∫ -->
(
sin
n
− − -->
2
-->
a
x
)
(
cos
m
-->
a
x
)
d
x
(for
m
,
n
>
0
)
=
(
sin
n
+
1
-->
a
x
)
(
cos
m
− − -->
1
-->
a
x
)
a
(
n
+
m
)
+
m
− − -->
1
n
+
m
∫ ∫ -->
(
sin
n
-->
a
x
)
(
cos
m
− − -->
2
-->
a
x
)
d
x
(for
m
,
n
>
0
)
{\displaystyle {\begin{aligned}\int (\sin ^{n}ax)(\cos ^{m}ax)\,dx&=-{\frac {(\sin ^{n-1}ax)(\cos ^{m+1}ax)}{a(n+m)}}+{\frac {n-1}{n+m}}\int (\sin ^{n-2}ax)(\cos ^{m}ax)\,dx\qquad {\mbox{(for }}m,n>0{\mbox{)}}\\&={\frac {(\sin ^{n+1}ax)(\cos ^{m-1}ax)}{a(n+m)}}+{\frac {m-1}{n+m}}\int (\sin ^{n}ax)(\cos ^{m-2}ax)\,dx\qquad {\mbox{(for }}m,n>0{\mbox{)}}\end{aligned}}}
∫ ∫ -->
d
x
(
sin
-->
a
x
)
(
cos
-->
a
x
)
=
1
a
ln
-->
|
tan
-->
a
x
|
+
C
{\displaystyle \int {\frac {dx}{(\sin ax)(\cos ax)}}={\frac {1}{a}}\ln \left|\tan ax\right|+C}
∫ ∫ -->
d
x
(
sin
-->
a
x
)
(
cos
n
-->
a
x
)
=
1
a
(
n
− − -->
1
)
cos
n
− − -->
1
-->
a
x
+
∫ ∫ -->
d
x
(
sin
-->
a
x
)
(
cos
n
− − -->
2
-->
a
x
)
(for
n
≠ ≠ -->
1
)
{\displaystyle \int {\frac {dx}{(\sin ax)(\cos ^{n}ax)}}={\frac {1}{a(n-1)\cos ^{n-1}ax}}+\int {\frac {dx}{(\sin ax)(\cos ^{n-2}ax)}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
∫ ∫ -->
d
x
(
sin
n
-->
a
x
)
(
cos
-->
a
x
)
=
− − -->
1
a
(
n
− − -->
1
)
sin
n
− − -->
1
-->
a
x
+
∫ ∫ -->
d
x
(
sin
n
− − -->
2
-->
a
x
)
(
cos
-->
a
x
)
(for
n
≠ ≠ -->
1
)
{\displaystyle \int {\frac {dx}{(\sin ^{n}ax)(\cos ax)}}=-{\frac {1}{a(n-1)\sin ^{n-1}ax}}+\int {\frac {dx}{(\sin ^{n-2}ax)(\cos ax)}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
∫ ∫ -->
sin
-->
a
x
d
x
cos
n
-->
a
x
=
1
a
(
n
− − -->
1
)
cos
n
− − -->
1
-->
a
x
+
C
(for
n
≠ ≠ -->
1
)
{\displaystyle \int {\frac {\sin ax\,dx}{\cos ^{n}ax}}={\frac {1}{a(n-1)\cos ^{n-1}ax}}+C\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
∫ ∫ -->
sin
2
-->
a
x
d
x
cos
-->
a
x
=
− − -->
1
a
sin
-->
a
x
+
1
a
ln
-->
|
tan
-->
(
π π -->
4
+
a
x
2
)
|
+
C
{\displaystyle \int {\frac {\sin ^{2}ax\,dx}{\cos ax}}=-{\frac {1}{a}}\sin ax+{\frac {1}{a}}\ln \left|\tan \left({\frac {\pi }{4}}+{\frac {ax}{2}}\right)\right|+C}
∫ ∫ -->
sin
2
-->
a
x
d
x
cos
n
-->
a
x
=
sin
-->
a
x
a
(
n
− − -->
1
)
cos
n
− − -->
1
-->
a
x
− − -->
1
n
− − -->
1
∫ ∫ -->
d
x
cos
n
− − -->
2
-->
a
x
(for
n
≠ ≠ -->
1
)
{\displaystyle \int {\frac {\sin ^{2}ax\,dx}{\cos ^{n}ax}}={\frac {\sin ax}{a(n-1)\cos ^{n-1}ax}}-{\frac {1}{n-1}}\int {\frac {dx}{\cos ^{n-2}ax}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
∫ ∫ -->
sin
2
-->
x
1
+
cos
2
-->
x
d
x
=
2
arctangant
-->
(
tan
-->
x
2
)
− − -->
x
(for x in
]
− − -->
π π -->
2
;
+
π π -->
2
[
)
=
2
arctangant
-->
(
tan
-->
x
2
)
− − -->
arctangant
-->
(
tan
-->
x
)
(this time x being any real number
)
{\displaystyle {\begin{aligned}\int {\frac {\sin ^{2}x}{1+\cos ^{2}x}}\,dx&={\sqrt {2}}\operatorname {arctangant} \left({\frac {\tan x}{\sqrt {2}}}\right)-x\qquad {\mbox{(for x in}}]-{\frac {\pi }{2}};+{\frac {\pi }{2}}[{\mbox{)}}\\&={\sqrt {2}}\operatorname {arctangant} \left({\frac {\tan x}{\sqrt {2}}}\right)-\operatorname {arctangant} \left(\tan x\right)\qquad {\mbox{(this time x being any real number }}{\mbox{)}}\end{aligned}}}
∫ ∫ -->
sin
n
-->
a
x
d
x
cos
-->
a
x
=
− − -->
sin
n
− − -->
1
-->
a
x
a
(
n
− − -->
1
)
+
∫ ∫ -->
sin
n
− − -->
2
-->
a
x
d
x
cos
-->
a
x
(for
n
≠ ≠ -->
1
)
{\displaystyle \int {\frac {\sin ^{n}ax\,dx}{\cos ax}}=-{\frac {\sin ^{n-1}ax}{a(n-1)}}+\int {\frac {\sin ^{n-2}ax\,dx}{\cos ax}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
∫ ∫ -->
sin
n
-->
a
x
d
x
cos
m
-->
a
x
=
{
sin
n
+
1
-->
a
x
a
(
m
− − -->
1
)
cos
m
− − -->
1
-->
a
x
− − -->
n
− − -->
m
+
2
m
− − -->
1
∫ ∫ -->
sin
n
-->
a
x
d
x
cos
m
− − -->
2
-->
a
x
(for
m
≠ ≠ -->
1
)
sin
n
− − -->
1
-->
a
x
a
(
m
− − -->
1
)
cos
m
− − -->
1
-->
a
x
− − -->
n
− − -->
1
m
− − -->
1
∫ ∫ -->
sin
n
− − -->
2
-->
a
x
d
x
cos
m
− − -->
2
-->
a
x
(for
m
≠ ≠ -->
1
)
− − -->
sin
n
− − -->
1
-->
a
x
a
(
n
− − -->
m
)
cos
m
− − -->
1
-->
a
x
+
n
− − -->
1
n
− − -->
m
∫ ∫ -->
sin
n
− − -->
2
-->
a
x
d
x
cos
m
-->
a
x
(for
m
≠ ≠ -->
n
)
{\displaystyle \int {\frac {\sin ^{n}ax\,dx}{\cos ^{m}ax}}={\begin{cases}{\frac {\sin ^{n+1}ax}{a(m-1)\cos ^{m-1}ax}}-{\frac {n-m+2}{m-1}}\int {\frac {\sin ^{n}ax\,dx}{\cos ^{m-2}ax}}&{\mbox{(for }}m\neq 1{\mbox{)}}\\{\frac {\sin ^{n-1}ax}{a(m-1)\cos ^{m-1}ax}}-{\frac {n-1}{m-1}}\int {\frac {\sin ^{n-2}ax\,dx}{\cos ^{m-2}ax}}&{\mbox{(for }}m\neq 1{\mbox{)}}\\-{\frac {\sin ^{n-1}ax}{a(n-m)\cos ^{m-1}ax}}+{\frac {n-1}{n-m}}\int {\frac {\sin ^{n-2}ax\,dx}{\cos ^{m}ax}}&{\mbox{(for }}m\neq n{\mbox{)}}\end{cases}}}
∫ ∫ -->
cos
-->
a
x
d
x
sin
n
-->
a
x
=
− − -->
1
a
(
n
− − -->
1
)
sin
n
− − -->
1
-->
a
x
+
C
(for
n
≠ ≠ -->
1
)
{\displaystyle \int {\frac {\cos ax\,dx}{\sin ^{n}ax}}=-{\frac {1}{a(n-1)\sin ^{n-1}ax}}+C\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
∫ ∫ -->
cos
2
-->
a
x
d
x
sin
-->
a
x
=
1
a
(
cos
-->
a
x
+
ln
-->
|
tan
-->
a
x
2
|
)
+
C
{\displaystyle \int {\frac {\cos ^{2}ax\,dx}{\sin ax}}={\frac {1}{a}}\left(\cos ax+\ln \left|\tan {\frac {ax}{2}}\right|\right)+C}
∫ ∫ -->
cos
2
-->
a
x
d
x
sin
n
-->
a
x
=
− − -->
1
n
− − -->
1
(
cos
-->
a
x
a
sin
n
− − -->
1
-->
a
x
+
∫ ∫ -->
d
x
sin
n
− − -->
2
-->
a
x
)
(for
n
≠ ≠ -->
1
)
{\displaystyle \int {\frac {\cos ^{2}ax\,dx}{\sin ^{n}ax}}=-{\frac {1}{n-1}}\left({\frac {\cos ax}{a\sin ^{n-1}ax}}+\int {\frac {dx}{\sin ^{n-2}ax}}\right)\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
∫ ∫ -->
cos
n
-->
a
x
d
x
sin
m
-->
a
x
=
{
− − -->
cos
n
+
1
-->
a
x
a
(
m
− − -->
1
)
sin
m
− − -->
1
-->
a
x
− − -->
n
− − -->
m
+
2
m
− − -->
1
∫ ∫ -->
cos
n
-->
a
x
d
x
sin
m
− − -->
2
-->
a
x
(for
m
≠ ≠ -->
1
)
− − -->
cos
n
− − -->
1
-->
a
x
a
(
m
− − -->
1
)
sin
m
− − -->
1
-->
a
x
− − -->
n
− − -->
1
m
− − -->
1
∫ ∫ -->
cos
n
− − -->
2
-->
a
x
d
x
sin
m
− − -->
2
-->
a
x
(for
m
≠ ≠ -->
1
)
cos
n
− − -->
1
-->
a
x
a
(
n
− − -->
m
)
sin
m
− − -->
1
-->
a
x
+
n
− − -->
1
n
− − -->
m
∫ ∫ -->
cos
n
− − -->
2
-->
a
x
d
x
sin
m
-->
a
x
(for
m
≠ ≠ -->
n
)
{\displaystyle \int {\frac {\cos ^{n}ax\,dx}{\sin ^{m}ax}}={\begin{cases}-{\frac {\cos ^{n+1}ax}{a(m-1)\sin ^{m-1}ax}}-{\frac {n-m+2}{m-1}}\int {\frac {\cos ^{n}ax\,dx}{\sin ^{m-2}ax}}&{\mbox{(for }}m\neq 1{\mbox{)}}\\-{\frac {\cos ^{n-1}ax}{a(m-1)\sin ^{m-1}ax}}-{\frac {n-1}{m-1}}\int {\frac {\cos ^{n-2}ax\,dx}{\sin ^{m-2}ax}}&{\mbox{(for }}m\neq 1{\mbox{)}}\\{\frac {\cos ^{n-1}ax}{a(n-m)\sin ^{m-1}ax}}+{\frac {n-1}{n-m}}\int {\frac {\cos ^{n-2}ax\,dx}{\sin ^{m}ax}}&{\mbox{(for }}m\neq n{\mbox{)}}\end{cases}}}
기타 부정적분
∫ ∫ -->
(
sin
-->
a
x
)
(
tan
-->
a
x
)
d
x
=
1
a
(
ln
-->
|
sec
-->
a
x
+
tan
-->
a
x
|
− − -->
sin
-->
a
x
)
+
C
{\displaystyle \int (\sin ax)(\tan ax)\,dx={\frac {1}{a}}(\ln |\sec ax+\tan ax|-\sin ax)+C}
∫ ∫ -->
tan
n
-->
a
x
d
x
sin
2
-->
a
x
=
1
a
(
n
− − -->
1
)
tan
n
− − -->
1
-->
(
a
x
)
+
C
(for
n
≠ ≠ -->
1
)
{\displaystyle \int {\frac {\tan ^{n}ax\,dx}{\sin ^{2}ax}}={\frac {1}{a(n-1)}}\tan ^{n-1}(ax)+C\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
∫ ∫ -->
tan
n
-->
a
x
d
x
cos
2
-->
a
x
=
1
a
(
n
+
1
)
tan
n
+
1
-->
a
x
+
C
(for
n
≠ ≠ -->
− − -->
1
)
{\displaystyle \int {\frac {\tan ^{n}ax\,dx}{\cos ^{2}ax}}={\frac {1}{a(n+1)}}\tan ^{n+1}ax+C\qquad {\mbox{(for }}n\neq -1{\mbox{)}}}
∫ ∫ -->
cot
n
-->
a
x
d
x
sin
2
-->
a
x
=
− − -->
1
a
(
n
+
1
)
cot
n
+
1
-->
a
x
+
C
(for
n
≠ ≠ -->
− − -->
1
)
{\displaystyle \int {\frac {\cot ^{n}ax\,dx}{\sin ^{2}ax}}=-{\frac {1}{a(n+1)}}\cot ^{n+1}ax+C\qquad {\mbox{(for }}n\neq -1{\mbox{)}}}
∫ ∫ -->
cot
n
-->
a
x
d
x
cos
2
-->
a
x
=
1
a
(
1
− − -->
n
)
tan
1
− − -->
n
-->
a
x
+
C
(for
n
≠ ≠ -->
1
)
{\displaystyle \int {\frac {\cot ^{n}ax\,dx}{\cos ^{2}ax}}={\frac {1}{a(1-n)}}\tan ^{1-n}ax+C\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
∫ ∫ -->
(
sec
-->
x
)
(
tan
-->
x
)
d
x
=
sec
-->
x
+
C
{\displaystyle \int (\sec x)(\tan x)\,dx=\sec x+C}
∫ ∫ -->
(
csc
-->
x
)
(
cot
-->
x
)
d
x
=
− − -->
csc
-->
x
+
C
{\displaystyle \int (\csc x)(\cot x)\,dx=-\csc x+C}
∫ ∫ -->
0
π π -->
2
sin
n
-->
x
d
x
=
∫ ∫ -->
0
π π -->
2
cos
n
-->
x
d
x
=
{
n
− − -->
1
n
⋅ ⋅ -->
n
− − -->
3
n
− − -->
2
⋯ ⋯ -->
3
4
⋅ ⋅ -->
1
2
⋅ ⋅ -->
π π -->
2
,
if
n
is even
n
− − -->
1
n
⋅ ⋅ -->
n
− − -->
3
n
− − -->
2
⋯ ⋯ -->
4
5
⋅ ⋅ -->
2
3
,
if
n
is odd and more than 1
1
,
if
n
=
1
{\displaystyle \int _{0}^{\frac {\pi }{2}}\sin ^{n}x\,dx=\int _{0}^{\frac {\pi }{2}}\cos ^{n}x\,dx={\begin{cases}{\frac {n-1}{n}}\cdot {\frac {n-3}{n-2}}\cdots {\frac {3}{4}}\cdot {\frac {1}{2}}\cdot {\frac {\pi }{2}},&{\text{if }}n{\text{ is even}}\\{\frac {n-1}{n}}\cdot {\frac {n-3}{n-2}}\cdots {\frac {4}{5}}\cdot {\frac {2}{3}},&{\text{if }}n{\text{ is odd and more than 1}}\\1,&{\text{if }}n=1\end{cases}}}
∫ ∫ -->
0
2
π π -->
sin
2
m
+
1
-->
x
cos
2
n
+
1
-->
x
d
x
=
0
n
,
m
∈ ∈ -->
Z
{\displaystyle \int _{0}^{2\pi }\sin ^{2m+1}{x}\cos ^{2n+1}{x}\,dx=0\!\qquad n,m\in \mathbb {Z} }
대칭성을 이용한 정적분
∫ ∫ -->
− − -->
c
c
sin
-->
x
d
x
=
0
{\displaystyle \int _{-c}^{c}\sin {x}\,dx=0}
∫ ∫ -->
− − -->
c
c
cos
-->
x
d
x
=
2
∫ ∫ -->
0
c
cos
-->
x
d
x
=
2
∫ ∫ -->
− − -->
c
0
cos
-->
x
d
x
=
2
sin
-->
c
{\displaystyle \int _{-c}^{c}\cos {x}\,dx=2\int _{0}^{c}\cos {x}\,dx=2\int _{-c}^{0}\cos {x}\,dx=2\sin {c}}
∫ ∫ -->
− − -->
c
c
tan
-->
x
d
x
=
0
{\displaystyle \int _{-c}^{c}\tan {x}\,dx=0}
∫ ∫ -->
− − -->
a
2
a
2
x
2
cos
2
-->
n
π π -->
x
a
d
x
=
a
3
(
n
2
π π -->
2
− − -->
6
)
24
n
2
π π -->
2
(for
n
=
1
,
3
,
5...
)
{\displaystyle \int _{-{\frac {a}{2}}}^{\frac {a}{2}}x^{2}\cos ^{2}{\frac {n\pi x}{a}}\,dx={\frac {a^{3}(n^{2}\pi ^{2}-6)}{24n^{2}\pi ^{2}}}\qquad {\mbox{(for }}n=1,3,5...{\mbox{)}}}
∫ ∫ -->
− − -->
a
2
a
2
x
2
sin
2
-->
n
π π -->
x
a
d
x
=
a
3
(
n
2
π π -->
2
− − -->
6
(
− − -->
1
)
n
)
24
n
2
π π -->
2
=
a
3
24
(
1
− − -->
6
(
− − -->
1
)
n
n
2
π π -->
2
)
(for
n
=
1
,
2
,
3
,
.
.
.
)
{\displaystyle \int _{\frac {-a}{2}}^{\frac {a}{2}}x^{2}\sin ^{2}{\frac {n\pi x}{a}}\,dx={\frac {a^{3}(n^{2}\pi ^{2}-6(-1)^{n})}{24n^{2}\pi ^{2}}}={\frac {a^{3}}{24}}(1-6{\frac {(-1)^{n}}{n^{2}\pi ^{2}}})\qquad {\mbox{(for }}n=1,2,3,...{\mbox{)}}}
같이 보기
삼각함수
적분표