군론에서 사타케 도표(영어: Satake diagram)는 반단순 리 군 또는 가약군의 구조를 나타내는 그래프의 일종이다.[1] 딘킨 도표에 추가로 꼭짓점의 색깔(검은색 또는 흰색)과 흰 꼭짓점 위의 절대 갈루아 군의 작용을 그린 것이다.
정의
실수 반단순 리 대수 <matth>\mathfrak g</math>가 주어졌다고 하자. 대합 에 대한 카르탕 분해
가 주어졌다고 하자. 즉, 의 콤팩트 실수 형태는 이다. 의 극대 아벨 부분 리 대수 를 고르고, 에 대하여 불변이며 를 카르탕 부분 대수
를 고르자. 그렇다면, 근계
및 무게 공간
를 정의할 수 있다. 그렇다면, 근들을 다음과 같은 두 종류로 분류할 수 있다.
- 에서 값이 0인 근.
- 에서 값이 0이 아닌 근. 이 위에는 갈루아 군 이 작용한다.
그렇다면, 의 사타케 도표는 의 딘킨 도표에 다음과 같은 추가 구조를 더한 것이다.
- 에서 값이 0인 근에 대응되는 꼭짓점은 검게 칠한다.
- 에서 값이 0이 아닌 근에 대응되는 꼭짓점은 희게 칠한다.
- 갈루아 군의 작용에 대하여 같은 궤도에 있는 두 흰 꼭짓점은 화살표로 잇는다.
보다 일반적으로, 임의의 체 위에 정의된 가약군에 대하여 사타케 도표를 정의할 수 있다. 이 경우, 흰 꼭짓점 위에는 해당 체의 절대 갈루아 군이 작용하게 된다.
예
콤팩트 실수 반단순 리 대수의 사타케 도표에서는 모든 꼭짓점이 검다.
분할 실수 반단순 리 대수의 사타케 도표에서는 모든 꼭짓점이 희며, 아무런 화살표도 없다 (즉, 갈루아 군의 작용은 항등 함수이다).
역사
사타케 이치로(일본어: 佐武 一郎, 1927〜2014)가 1960년에 도입하였다.[2]
각주