구조식(構造式, 영어: structural formula)은 분자 구조(구조화학에 의해 결정됨)를 그래픽으로 표현한 것으로, 3차원 공간에서 원자가 어떻게 배열되는지를 보여준다. 분자의 화학 결합도 분명하게 하거나 내포하여 표시한다. 한정된 수의 기호를 갖고 제한된 서술만을 할 수 있는 분자식과는 달리, 구조식은 보다 완벽한 분자 구조의 기하학적 정보를 제공한다. 예를 들어, 분자식은 같지만 원자의 구조나 배열이 다른 이성질체를 정확히 표현할 수 있다.
화합물 데이터베이스와 같은 여러 체계적인 화합 명명 포맷이 사용되며, 기하학적 구조와 동등하고 매우 효과적이다. 이러한 화합물 명명법에는 SMILES, InChI 그리고 CML 등이 있다. 이런 명명법은 구조식으로 변환할 수 있고, 그 역도 가능하지만, 화학자들은 대게 이러한 명명법보다는 구조식을 통해 화학 반응이나 합성을 설명한다. 왜냐하면 화학 반응 중에 일어나는 구조적 변화와 분자를 시각화할 수 있기 때문이다.
루이스 구조 또는 루이스 전자점식은 원자의 연결과 고립 전자쌍 또는 유리기 전자를 보여주는 평평한 그래픽 구조식이며, 3차원 구조는 아니다. 이 표기법은 대체로 작은 분자에 사용된다. 각 선은 단일 결합의 두 전자를 나타낸다. 원자 사이의 두 개, 혹은 세 개의 평행선은 각각 이중, 삼중 결합을 나타낸다. 선 대신 점들로 결합을 나타낼 수도 있다. 또, 모든 짝지은 전자와 그렇지 않은 비결합 전자와 원자의 형식 전하를 표시한다.
그래픽 사용이 매우 제한적이었던 초기 유기화학 출판물에서는 텍스트 형태로 유기 구조를 설명하였다. 이 방식을 간략구조식[1][2](영어: condensed formulas)이라고 한다. 간략구조식은 고리 화합물에 적용할 때 문제가 있지만, 간단한 구조를 나타내기에 편리하다.
골격 구조식(영어: skeletal formula) 또는 뼈대 구조[3]는 보다 복잡한 유기 화합물의 표준 표기법이다. 유기화학자아우구스트 케쿨레가 처음으로 사용한 이러한 유형의 다이어그램에서는 탄소 원자는 원소 기호 C로 표시되지 않으며, 꼭짓점(모서리)와 선 끝에 위치하도록 암시한다. 탄소 원자에 붙은 수소 원자는 표기하지 않는다: 각 탄소 원자는 탄소 원자에 네 개의 결합을 할 수 있는 충분한 수소 원자와 연결되어 있는 것으로 이해된다. 탄소 원자에 양전하나 음전하가 존재하면 암시된 수소 원자 중 하나를 대신한다. 탄소 이외의 원자에 붙은 수소 원자는 명백히 표기한다.
골격 구조식의 카이랄성은 나타 투영법 (en:Natta projection)으로 표현된다. Solid wedged 또는 dashed wedged 결합은 각각 종이의 above-the-plane 또는 below-the-plane 결합을 말한다.
불특정한 입체화학
물결 모양의 단일 결합은 알려지지 않았거나 불특정한 입체화학 또는 이성질체 혼합물을 말한다. 예를 들어, 왼쪽 그림에서는 왼쪽에 있는 HOCH2- 그룹에서 물결 모양 결합을 갖는 프럭토스 분자를 보여준다. 이 경우에는, 가능한 두 개의 고리 구조가 서로 화학 평형 상태에 있으면서 열린 사슬 구조이다. 고리는 자동으로 열리고 닫히는데, 닫힌 것으로 입체화학화하기도 하고, 열린 것으로 하기도 한다.
골격 구조식은 알켄의 기하 이성질체를 묘사할 수 있다. 물결 모양의 단일 결합은 알려지지 않았거나 불특정한 입체화학 또는 사면체 카이랄 센터와 같은 이성질체 혼합물을 나타내는 표준 방식이다. 교차된 이중 결합은 가끔 사용되었지만, 더 이상 일반적인 용도로는 허용되는 방식이 아니다.[4]
구조식은 간소화된 모델로, 화학 구조의 특정한 면을 나타낼 수 없다. 예를 들어, 공액계와 같은 동적 시스템에는 적용되지 않을 수 있다. 방향족은 그런 경우에 해당하고, 결합을 나타내기 위해 관례에 의존한다. 다른 스타일의 구조식은 다른 방법으로 방향족성을 나타낼 수 있으며, 동일한 화합물을 다르게 표현하게 될 수 있다.