이 문서는 오차 함수의 도함수에 관한 것입니다. 정수값을 가지는 함수에 대해서는 바닥 함수 문서를 참고하십시오.
수학에서, 가우스 함수(-函數, 영어: Gaussian function)는 다음과 같은 형태의 함수이다.여기서 a, b, c는 실수인 상수이고 c는 0이 아니다. 이 함수는 카를 프리드리히 가우스의 이름을 따서 명명되었다. 가우스 함수의 그래프는 좌우대칭의 종 모양의 곡선으로 +/-의 극한을 향하면서는 급격히 감소하는 특성을 가진다. 매개변수 a는 곡선의 꼭대기 높이가 되며, b는 꼭대기의 중심의 위치가 된다. c는 표준 편차로서 "종"의 너비를 결정한다.
가우스 함수는 기댓값이 μ = b이고 분산이 σ2 = c2인 정규 분포의 확률 밀도 함수를 나타낼 때 주로 사용된다. 이 경우 가우스 함수는와 같은 형태가 된다.[1]
가우스 함수는 통계학에서의 정규 분포나 신호 처리, 이미지 처리, 열 방정식의 해 등 여러 경우에 사용된다.
성질
이차 함수와 지수 함수를 합성한 함수
는 가우스 함수이다. 여기서 , , 이다. 따라서 가우스 함수는 로그를 취했을 때 아래로 볼록인 이차함수가 되는 함수이다.
매개변수 c는 함수의 반치전폭(FWHM)을 결정하며 이다. 반치전폭 w가 주어졌을 때 가우스 함수는
로 나타낼 수 있다. 함수의 최댓값의 1/10이 되는 두 독립변수들의 차이인 FWTM은 다음과 같다.
한편 가우스 함수는 x = b ± c에서 두 변곡점을 가진다. 또 가우스 함수는 해석 함수이며, x → ∞일 때 극한은 0으로 수렴한다.
가우스 함수는 초등함수이지만 그 부정적분은 초등함수로 나타내는 것이 불가능하며, 가우스 함수의 적분을 오차 함수라고 한다. 실직선 전체에서 가우스 함수의 이상 적분의 값은 아래와 같이 계산된다.
일반적인 경우에 대해서는 아래와 같다.
일 때 가우스 함수의 이상 적분 값은 1이 된다. 이 경우 가우스 함수는 기댓값이 μ = b이고 분산이 σ2 = c2인 정규 분포의 확률 밀도 함수가 되며, 식은 아래와 같다.
위의 그래프에는 각 μ, σ2에 대해 정규화된 가우스 함수가 나타나 있다.
두 가우스 함수의 곱은 가우스 함수이고, 두 가우스 함수의 합성곱도 여전히 가우스 함수이다. 이때 분산은 기존의 두 가우스 함수의 분산의 합과 같다. 반면 두 정규분포 가우스 함수의 곱은 일반적으로 정규분포 가우스 함수가 되지 않는다.