ホセイン・タバコリ
|
Read other articles:
Nonsan 논산KotamadyaTranskripsi Korea • Hangul논산시 • Hanja論山市 • Alih Aksara yang DisempurnakanNonsan-si • McCune-ReischauerNonsan-si BenderaLokasi di Korea SelatanNegara Korea SelatanWilayahHoseoPembagian administratif2 eup, 11 myeon, dan 2 dongPemerintahan • MayorLim Sung-kyuLuas • Total554,82 km2 (214,22 sq mi)Populasi (2003) • Total136.356 • Kepadatan24...
ATK (previously known as Atlético de Kolkata), was an Indian football club based in Kolkata, West Bengal, that played in Indian Super League. It was established on 7 May 2014 as the first team in the Indian Super League, and played its home games at the Salt Lake Stadium.[1] The club was merged with Mohun Bagan AC to form Mohun Bagan Super Giant on 1 June 2020. List of players 1. Xavi lara 2. Helder Postiga 3. SK. Jewel Raja 4. Samig Doutie 5. Debjit Mazumder 6. Ian Hume 7. Borja Fe...
Bene protetto dall'UNESCOResidenze della Casa Reale di Savoia Patrimonio dell'umanità TipoCulturale Criterio(i) (ii) (iv) (v) PericoloNessuna indicazione Riconosciuto dal1997 Scheda UNESCO(EN) Residences of the Royal House of Savoy(FR) Résidences des Savoie Manuale Le residenze sabaude in Piemonte sono l'insieme degli edifici residenziali dei Savoia a Torino e dintorni, molti dei quali iscritti nella Lista del Patrimonio Mondiale dell'UNESCO. Indice 1 Storia 2 Siti 2.1 Patrimonio...
لمعانٍ أخرى، طالع أخناتون (توضيح). أخناتونأمنمحتب الرابعAmenophis IV, Naphu(`)rureya, Ikhnaton[1]تمثال لأخناتون بأسلوب العمارنة المُبكر.فرعون مصرالحقبة1353–1336 ق.م[2] أو 1351–1334 ق.م[3], الأسرة المصرية الثامنة عشرسبقهأمنحتب الثالثتبعهتوت عنخ آمون الألقاب الملكية اسم التتويج:...
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Koi to Yobu ni wa Kimochi Warui恋と呼ぶには気持ち悪いGenreKomedi romantis MangaPengarangMogusuPenerbitIchijinshaMajalahComic POOLDemografiJoseiTerbit25 Januari, 2015 – 25 Maret, 2021Volume8 Seri animeSutradaraNaomi NakayamaProduserShunsuke...
Jean CocteauJean Cocteau pada tahun 1923LahirJean Maurice Eugène Clément Cocteau(1889-07-05)5 Juli 1889Maisons-Laffitte, PrancisMeninggal11 Oktober 1963(1963-10-11) (umur 74)Milly-la-Foret, PrancisPasanganPanama Al Brown(?)Jean Marais (1937–1963) Jean Maurice Eugène Clément Cocteau (pengucapan bahasa Prancis: [ʒɑ̃ kɔkto]; 5 Juli 1889 – 11 Oktober 1963) adalah penyair, novelis, penulis drama, perancang, manajer tinju, penulis drama, dan pembuat film prancis...
Constructing a product by means of computer CAD and CADD redirect here. For the currency, see Canadian dollar. For other uses, see Cad (disambiguation) and CADD (disambiguation). A 2D CAD drawing A 3D CAD model Computer-aided design (CAD) is the use of computers (or workstations) to aid in the creation, modification, analysis, or optimization of a design.[1]: 3 This software is used to increase the productivity of the designer, improve the quality of design, improve ...
Device for transmitting messages in written form by electrical signals Teletype redirects here. For other uses, see Teletype (disambiguation). For the telecommunications system consisting of teleprinters connected by radio, see Radioteletype. Teletype teleprinters in use in England during World War II Example of teleprinter art: a portrait of Dag Hammarskjöld, 1962 A teleprinter (teletypewriter, teletype or TTY) is an electromechanical device that can be used to send and receive typed messag...
Ci GentisLokasiNegaraIndonesiaCiri-ciri fisikHulu sungaiGunung Sanggabuana Muara sungaiSungai CibeetPanjang12 km (7,5 mi) Curug Ci Gentis Ci Gentis adalah sebuah sungai di kabupaten Karawang, Jawa Barat. Sungai ini berhulu di Gunung Sanggabuana wilayah perbatasan antara Jonggol dengan Karawang. Sungai ini adalah satu dari dua anak sungai utama Sungai Cibeet selain Sungai Cipamingkis. Di hulu Ci Gentis terdapat objek wisata Curug Cigentis[1] yang merupakan sebuah air terjun d...
Предположительные районы проживания дауров, дючеров и гогулей в середине XVII в Дючеры или дучеры — русское название народа, жившего в XVII веке на берегах Амура, приблизительно от устья Зеи до устья Уссури, и несколько ниже по течению[1][2]. Содержание 1 Описание,...
土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) ...
El Concilio en una calcografía de Elia Naurizio publicada en el siglo XIX El Concilio en una obra de Pasquale Cati. Este artículo o sección necesita referencias que aparezcan en una publicación acreditada. Busca fuentes: «Concilio de Trento» – noticias · libros · académico · imágenesEste aviso fue puesto el 19 de septiembre de 2023. El Concilio de Trento fue un concilio ecuménico de la Iglesia católica desarrollado en periodos discontinuos durante veinti...
Legally protected land, eg national parks Grand Canyon of Yellowstone John Muir (1838–1914), one of the main inspirations for the U.S. national park system.Why should man value himself as more than a small part of the one great unit of creation ? - John Muir.[1] The protected areas of the United States are managed by an array of different federal, state, tribal and local level authorities and receive widely varying levels of protection. Some areas are managed as wilderness, whi...
Борис Миколайович Лятошинський Борис Миколайович ЛятошинськийІм'я при народженні Борис Миколайович ЛятошинськийНародився 22 листопада (4 грудня) 1894[4][5]Житомир, Російська імперія[1]Помер 15 квітня 1968(1968-04-15)[1][2][…] (73 роки)Київ, Українська РСР, СРСР[1]...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: GENESIS software – news · newspapers · books · scholar · JSTOR (November 2016) (Learn how and when to remove this message) Original author(s)Dr. James M. BowerInitial release1988Stable release2.4[1] / November 2014; 9 years ago...
Interstate Highway in Florida, United States Interstate 295I-295 highlighted in redRoute informationAuxiliary route of I-95Maintained by FDOTLength61.04 mi[1] (98.23 km)Existed1970–presentNHSEntire routeMajor junctionsBeltway around Jacksonville, FloridaMajor intersections US 17 I-10 US 1 / US 23 I-95 US 90 SR 202 Future I-795 / SR 9B LocationCountryUnited StatesStateFloridaCountiesDuval Highway system Interstate Highway System ...
Genre of comedy film Bringing Up Baby (1938) is a screwball comedy from the genre's classic period. Screwball comedy is a film subgenre of the romantic comedy genre that became popular during the Great Depression, beginning in the early 1930s and thriving until the early 1950s, that satirizes the traditional love story. It has secondary characteristics similar to film noir, distinguished by a female character who dominates the relationship with the male central character, whose masculinity is...
Finnish tennis player (born 1990) Henri KontinenKontinen at the 2019 Wimbledon ChampionshipsCountry (sports) FinlandResidenceTallinn, EstoniaBorn (1990-06-19) 19 June 1990 (age 34)Helsinki, FinlandHeight1.91 m (6 ft 3 in)Turned pro2008Retired2021[1]PlaysRight-handed (one-handed backhand)CoachChris EatonPrize money$3,584,065Official websitehenrikontinen.comSinglesCareer record7–6Career titles0Highest rankingNo. 220 (18 October 20...
Christianity in the Celtic language–speaking world during the early Middle Ages A Celtic Cross in Knock, Ireland Celtic Christianity[a] is a form of Christianity that was common, or held to be common, across the Celtic-speaking world during the Early Middle Ages.[1] Some writers have described a distinct Celtic Church uniting the Celtic peoples and distinguishing them from adherents of the Roman Church, while others classify Celtic Christianity as a set of distinctive practi...
Algebraic operation Not to be confused with scalar product. Scalar multiplication of a vector by a factor of 3 stretches the vector out. The scalar multiplications −a and 2a of a vector a In mathematics, scalar multiplication is one of the basic operations defining a vector space in linear algebra[1][2][3] (or more generally, a module in abstract algebra[4][5]). In common geometrical contexts, scalar multiplication of a real Euclidean vector by a posi...